Global Versus Local Statement Of Stress Constraints In Topology Optimization Of Continuum Structures
Price
Free (open access)
Transaction
Volume
91
Pages
11
Published
2007
Size
995 kb
Paper DOI
10.2495/OP070021
Copyright
WIT Press
Author(s)
J. Par´ıs, F. Navarrina, I. Colominas & M. Casteleiro
Abstract
Structural topology optimization problems have been traditionally set out in terms of maximum stiffness formulations. In this approach, the goal is to distribute a given amount of material in a certain region, so that the stiffness of the resulting structure is maximized for a given load case. Even though this approach is quite convenient, it also entails some serious conceptual and practical drawbacks. The authors, in common with other research groups, have been working for a few years on the possibility of stating these kinds of problems by means of a FEMbased minimum weight with stress (and/or displacement) constraints formulation. The physical meaning of this approach is closer to the engineering point of view. Furthermore, most of the above mentioned drawbacks could be removed this way. However, this also leads to more complicated optimization problems with much higher computational requirements, since a large number of highly non-linear (local) constraints must be taken into account to limit the maximum stress (and/or displacement) at the element level. In this paper, we explore the feasibility of defining a so-called global constraint, whose basic aim is to limit the maximum stress (and/or displacement) simultaneously within all the structure by means of one single inequality. Should this global constraint perform adequately, the complexity of the underlying mathematical programming problem should be drastically reduced. Finally, we compare the results provided by both types of constraints in some application examples.
Keywords