Parametric Modelling Of An Air-liftableorigami-inspired Deployable Shelterwith A Novel Erection Strategy
Price
Free (open access)
Transaction
Volume
136
Pages
11
Published
2014
Size
842 kb
Paper DOI
10.2495/MAR140021
Copyright
WIT Press
Author(s)
C. P. Quagli, Z. C. Ballard & A. P. Thrall
Abstract
Lightweight, deployable structures are critical for temporary sheltering in military or disaster relief operations. For these purposes, rigid wall shelters are preferable to soft wall (canvas) solutions since they provide enhanced thermal insulation. However, challenges in implementing rigid wall solutions include transportability and erectability. Toward the former, the art of origami can be utilized as inspiration for a structure which can be folded onto a standardized pallet, thereby enabling it to be transported by air, rail, or truck. For erectability, the authors have proposed an erection strategy based on the principal of counterweighting which can rotate a shelter into position without the use of heavy lifting equipment. This paper presents a parametric finite element model for a rigid wall origami-inspired concept that implements this erection strategy. The model is used to investigate structural performance within the feasible solution space of six independent geometric parameters. These parameters are limited by constraints related to packaged size and capability of interfacing with existing technologies (e.g. kitchens, latrines) in the deployed form. A final design is shown. Keywords: origami, deployable shelter, counterweight.
Keywords
origami, deployable shelter, counterweight.