The Parallel Solution Of Banded Linear Systems By The Block Stride Reduction Algorithm
Price
Free (open access)
Volume
3
Pages
17
Published
1993
Size
1,005 kb
Paper DOI
10.2495/ASE930011
Copyright
WIT Press
Author(s)
D.J. Evans
Abstract
The parallel solution of banded linear systems by the block stride reduction algorithm D.J. Evans Parallel Algorithms Research Centre, Loughborough University of Technology, Loughborough, Leicestershire, UK ABSTRACT A comparison of the Buneman version of the block cyclic reduction (BCR) algorithm and Stride Reduction (BSR) based on polynomial factorization for separable elliptic equations with Dirichlet boundary conditions is presented. This study was initiated by an interest in the parallel computing techniques that can be used to increase the computational efficiency of these model problems. 1. INTRODUCTION Serial algorithms for solving Poisson equations using block cyclic reduction (BCR) techniques with polynomial factorization have been known since the late 1960's, Buzbee et al (1970). Swarztrauber (1974) extended the theory to separable elliptic equations. Heller (1976) described an algorithm for solving a tridiagonal linear system using further generalizat
Keywords