WIT Press


Experimental And Numerical Investigation Of The Sliding Behaviour Of A Set Of Two Rigid Blocks Subjected To Cyclic Shear-type Loads

Price

Free (open access)

Volume

95

Pages

11

Published

2007

Size

1,452 kb

Paper DOI

10.2495/STR070591

Copyright

WIT Press

Author(s)

G. C. Manos, V. Kourtides, M. Demosthenous & E. Tsakmakides

Abstract

The aim of this paper is to study the shear transfer mechanism through the horizontal contact surface of two rigid blocks. The shear resistance offered by this contact interface is the main mechanism mobilized by the structural elements of many ancient stone dry-masonry structures in order to transfer horizontal actions from earthquakes and wind forces to the foundation. In some cases a certain connection exists between two blocks at the contact surface, which is materialized by wooden or metal parts at the central area of the blocks (poles, empolia). The role of this connection in transferring horizontal forces and its influence on the seismic behaviour is a point long debated by the research community. Cyclic experiments were performed at the laboratory of Strength of Materials and Structures of Aristotle University of Thessaloniki-Greece in order to study this sliding behaviour at the interface between two rigid blocks. The experimental sequence under investigation can be divided into two groups. The first group includes specimens without any connection between the rigid blocks, while the second group includes specimens with poles and empolia connecting the rigid blocks. During all tests the imposed cyclic horizontal sliding displacement was combined with constant level of vertical load applied at the top of the upper block. Through this experimental process, it became possible to describe the shear transfer mechanism through diagrams of horizontal sliding displacement versus horizontal load, and study the effects on the shear transfer behaviour between these rigid blocks without or with the connection with poles and empolia between them. Numerical finite element simulations of this shear transfer mechanism were also performed utilizing two commercial Finite Element Software packages. Keywords: ancient temples, ancient columns, rigid blocks, poles, empolia.

Keywords

ancient temples, ancient columns, rigid blocks, poles, empolia.