Iterative 3D BEM Solver On Complex Faults Geometry Using Angular Dislocation Approach In Heterogeneous, Isotropic Elastic Whole Or Half-space
Price
Free (open access)
Transaction
Volume
47
Pages
8
Page Range
201 - 208
Published
2008
Size
572 kb
Paper DOI
10.2495/BE080201
Copyright
WIT Press
Author(s)
F. Maerten & L. Maerten
Abstract
Based on the analytical solution of the induced displacement caused by a 3D angular dislocation, it is possible to construct closed polygonal loops with constant Burgers’s vector, from which the stress is derived using linear elasticity in homogeneous, isotropic whole- or half-space. In this BEMcode, each fault is discretized as a triangulated mesh, where mixed boundary conditions are prescribed. Incorporatematerial heterogeneity is done by using triangulated interfaces made of dual-elements with prescribed continuity and equilibrium conditions. Each interface and fault can therefore have a complex 3D geometry with no gaps or overlaps between elements. We use an iterative solver where the system of equations is decomposed at the element level, allowing a simple formulation of the boundary conditions for elementsmaking a fault, and continuity/equilibrium conditions at dual-elements making an interface. It is shown that strict diagonal dominance can be achieved only if continuity and equilibrium conditions, for a given dual-element, are solved simultaneously. Using a Gauss-Seidel-like method, we consequently reduce the complexity while automatically taking care of the sparsity of the system. Moreover, using a Jacobi-like solver, we show that the resolution of the system can simply be parallelized on multi-core processors. Some comparisons with a 2D analytical solution and a 2D BEM code are presented. Keywords: iterative solver, indirect method, heterogeneity, optimization, complex 3D geometry.
Keywords
iterative solver, indirect method, heterogeneity, optimization, complex 3D geometry.