Tetra-marching Procedure For High Order Level Contour Reconstruction Method
Price
Free (open access)
Transaction
Volume
69
Pages
12
Page Range
507 - 518
Published
2010
Size
1,201 kb
Paper DOI
10.2495/AFM100441
Copyright
WIT Press
Author(s)
I. Yoon & S. Shin
Abstract
Direct numerical simulation of the multiphase flow on a fixed Eulerian grid became increasingly popular due to its simplicity and robustness. Lately, there have been efforts to construct hybrids from existing well-known methods including VOF, Level Set, and Front Tracking with the intention of overcoming the inherent drawbacks of each method. The Level Contour Reconstruction Method is one of the hybrid type methods, which combines the Front Tracking and Level Set characteristics. By introducing a high order interpolation kernel during interface reconstruction, we could reconstruct the interface very accurately and smoothly compared to linear interpolation of a given distance function field. The high order reconstruction procedure can be undertaken, generally, with the same rectangular shaped Eulerian grid structure as the flow computation. With this rectangular shaped grid, there can be more than two lines in a single cell during the reconstruction. In this paper, we introduce the tetramarching reconstruction procedure which can eliminate ambiguity of drawing contour lines between multiple edge points in a single cell during high order reconstruction. We tested several benchmarking simulations of interface evolution and found that high order reconstruction with a tetra-marching procedure enables the fidelity of the reconstructed interface, which is continuous and smooth even with a highly distorted interface. Keywords: interface reconstruction, front tracking, level set, tetra-marching, numerical simulation.
Keywords
interface reconstruction, front tracking, level set, tetra-marching, numerical simulation