Computational Evaluation Of Interfacial Fracture Toughness Of Thin Coatings
Price
Free (open access)
Transaction
Volume
62
Pages
10
Page Range
85 - 94
Published
2009
Size
400 kb
Paper DOI
10.2495/SECM090081
Copyright
WIT Press
Author(s)
M. Bielawski & K. Chen
Abstract
A computational method to evaluate fracture toughness of single- and multilayered coatings using first-principles density functional theory (DFT) calculations was proposed. This method was first applied to calculate elastic properties and fracture toughness KIC of single crystalline TiC and several transition metal nitrides with cubic structure, such as TiN, CrN, ZrN, VN and HfN. After comparison with known experimental data and other DFT results, the reliability of present calculations was favourably confirmed. Next, DFT was applied to calculate the ideal work of adhesion Wad, Young’s modulus E and interfacial fracture toughness KIC Int for bi-layer combinations of five transition metal nitrides in (100) and (110) surface orientations. For the analyzed coatings, the following trends were observed: E(100) > E(110), Wad(100) < Wad(110) and KIC Int(100) < KIC Int(110), demonstrating that it is the Wad that plays a decisive role in determining interfacial fracture toughness of these materials. All interfaces formed with TiN in the (110) orientation showed the best combination of adhesion and interfacial fracture toughness. Keywords: thin coatings, first-principles calculations, elastic properties, fracture toughness, interfacial fracture toughness.
Keywords
thin coatings, first-principles calculations, elastic properties, fracture toughness, interfacial fracture toughness