WIT Press

Prioritization of hazards by means of a QFD-based procedure

Price

Free (open access)

Volume

Volume 8 (2018), Issue 2

Pages

11

Page Range

342 - 353

Paper DOI

10.2495/SAFE-V8-N2-342-353

Copyright

WIT Press

Author(s)

MARA LOMBARDI & MARIO FARGNOLI

Abstract

Despite the evolution of regulations in the field of occupational health and safety promoted in EU countries, the number of accidents and victims has not significantly decreased in recent years, especially in constructions and agriculture sectors, as underlined by official reports of the Italian Workers’ Compensation Authority. Main reasons of such a situation are due to the characteristics of working activities in these sectors. The variety of operations, the frequent exchange of tasks among workers within the same company, the continuous change of workplaces, the frequent exchange of workers for the same activity (e.g. seasonal workers), and the workers’ stress caused by seasonal jobs. For these reasons both risk assessment and safety management activities result in being more difficult than in other working sectors. Thus, it is important to provide methodologies and tools that allow companies to carry out these tasks more effectively. In such a context, the study proposed by Esra Bas in 2014 certainly represents an attempt to provide a supporting methodology for engineers engaged in risk assessment activities. This approach consists in the use of the Quality Function Deployment (QFD) method, and it is aimed at evaluating how specific tasks can be in relationship with specific hazards, which in turn are related to specific events, and finally at defining what preventive/protective measures can be introduced against those events. Based on this, we tried to further investigate such an approach, with the goal of providing an easier-to-use tool, which can be used in risk assessment activities of critical contexts as the agriculture one. With this aim in mind, a case study concerning the risk assessment of an agricultural machinery was carried out.

Keywords

agricultural equipment, house of quality, machinery safety, occupational safety, quality function deployment, risk assessment