WIT Press

MAGNETO-MECHANICAL ACTUATION MODEL FOR FIN-BASED LOCOMOTION

Price

Free (open access)

Volume

Volume 8 (2013), Issue 3

Pages

9

Page Range

246 - 255

Paper DOI

10.2495/DNE-V8-N3-246-255

Copyright

WIT Press

Author(s)

J.P. CARBAJAL & NAVEEN KUPPUSWAMY

Abstract

In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic linear actuator with applications to fin-based locomotion. Most of the current robotic fish generate bending motion using rotary motors that implies at least one mechanical conversion of the motion. We seek a solution that directly bends the fin and, at the same time, is able to exploit the magneto-mechanical properties of the fin material. This strong fin–actuator coupling blends the actuator and the body of the robot, allowing cross optimization of the system’s elements. We study a simplified model of an elastic element, a spring–mass system representing a flexible fin, subjected to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the periodic bending of the fin and the generation of thrust. The frequency, maximum amplitude and center of the periodic orbits (offset of the bending) depend directly on the stiffness of the fin and the intensity of the forcing; we use this dependency to sketch a simple parameter controller. Although the model is strongly simplified, it provides means to estimate first values of the parameters for this kind of actuator and it is useful to evaluate the feasibility of minimal actuation control of such systems.

Keywords

Fin-based locomotion, flexible fin, Magneto-Mechanical Actuators, Robotic fish