WIT Press

SWARM INTELLIGENCE ALGORITHMS FOR THE PROBLEM OF THE OPTIMAL PLACEMENT AND OPERATION CONTROL OF REACTIVE POWER SOURCES INTO POWER GRIDS

Price

Free (open access)

Volume

Volume 12 (2017), Issue 1

Pages

11

Page Range

101 - 112

Paper DOI

10.2495/DNE-V12-N1-101-112

Copyright

WIT Press

Author(s)

V. MANUSOV, P. MATRENIN & S. KOKIN

Abstract

Deep reactive power compensation allows for reduction of active power losses in transmission lines of power supply systems. The efficiency of the compensation depends on the allocation of reactive power compensation units (RPCUs) at the nodes of a network. In general, investigations devoted to the study of optimal allocation of the compensation units have revealed that it is a static and deterministic optimization problem that can be solved by heuristic methods. However, in real systems, it is reasonable to consider such optimization problems, taking into account the dynamic and stochastic properties of the problems. These properties are the result of equipment failures and operational changes in technical systems. In addition, optimizing the allocation of the compensation units is the NP-hard multifactor problem. Under these circumstances, it is advisable to use the swarm intelligence algorithms. Swarm intelligence is a relatively new approach to solving the optimization problem, which takes inspiration from the behaviour of ants, birds, and other animals. Advantages of swarm algorithms are most evident if problems involve the dynamic or stochastic nature of the objective function and constraints. Contrary to a number of similar studies, this research considers the problem of the optimal allocation of compensation units as a dynamic problem, taking into account the possible random failures of the compensation equipment. The optimization problem has been solved by two Swarm Intelligence algorithms (the Particle Swarm optimization and the Artificial Bee Colony optimization) and Genetic algorithms. It has been aimed at comparing the effectiveness of the algorithms for solving such problems. It was found that swarm algorithms could be successfully applied in the operation control of compensation units in real-time.

Keywords

deep compensation, dynamic optimization problems, operation control, power supply systems, swarm intelligence