DISSIPATIVE PARTICLE DYNAMICS SIMULATION OF MULTIPLE DEFORMABLE RED BLOOD CELLS IN A VESSEL
Price
Free (open access)
Volume
Volume 6 (2018), Issue 2
Pages
10
Page Range
303 - 313
Paper DOI
10.2495/CMEM-V6-N2-303-313
Copyright
WIT Press
Author(s)
LANLAN XIAO, YANG LIU, SHUO CHEN & BINGMEI FU
Abstract
The blood flow properties in microvessels were examined through simulating the dynamics of deformable red blood cells suspended in plasma using dissipative particle dynamics. The cell membrane was considered as a spring-based triangulated network and the intercellular interaction was modeled by a Morse potential function. The cell distribution in the cross section indicated that red blood cells migrate away from the wall to the tube center, resulting in a cell-free layer near the wall and blunt velocity profile. The findings also showed that the bluntness of velocity profile increases with increasing hematocrit. In addition, the Fahraeus and Fahraeus–Lindqvist effects were captured through investigating the effects of tube diameter and hematocrit on the discharge hematocrit and relative apparent viscosity. It appears that this flow model can capture the blood flow behaviors under physiological and pathological conditions.
Keywords
blood flow, dissipative particle dynamics, red blood cell