Design for additive manufacturing – material characterization and geometrical optimization
Price
Free (open access)
Volume
Volume 10 (2022), Issue 2
Pages
11
Page Range
146 - 157
Paper DOI
10.2495/CMEM-V10-N2-146-157
Copyright
WIT Press
Author(s)
Franco Concli & Margherita Molinaro
Abstract
Additive manufacturing (AM) is a more and more appreciated manufacturing technology. This growing interest is related to the high flexibility of this approach and its capability to produce any geometry, opening new possibilities. An example is the improvement of the system performances exploiting lattice and reticular in substitution to the traditional solid design. Despite this premise, in real applications, part of the benefits is lost due to the inferior performances of the AM steels and the higher costs of additive manufacturing. In this scenario, the mechanical properties of a 17-4 PH SS produced via additive technology were characterized with experimental tests. The results were compared with data concerning the cast material. In this way, it was possible to execute a quantitative evaluation of the performance reduction. Three components, such as a hip prosthesis, a blow plastic bottle die, and an automotive gear, were chosen as representative examples. These three mechanical components are typically produced in quite different batch sizes. The hip prosthesis, the blow plastic bottle die, and the automotive gear were redesigned (design for AM) via a finite element (FE) approach. The new designs fulfill the original requirements in terms of strength showing however improved inertial properties. The original and new designs were exploited to quantify the benefits of introducing AM in different applications.
Keywords
additive manufacturing, finite elements, optimization