WIT Press

THE RESPONSE OF A TWO-DEGREE-OF-FREEDOM DYNAMIC SLIDING SYSTEM SUBJECTED TO UNI-DIRECTIONAL HORIZONTAL DYNAMIC AND SEISMIC EXCITATIONS

Price

Free (open access)

Volume

Volume 1 (2013), Issue 3

Pages

16

Page Range

221 - 237

Paper DOI

10.2495/CMEM-V1-N3-221-237

Copyright

WIT Press

Author(s)

G.C. MANOS, G. KOIDIS & M. DEMOSTHENOUS

Abstract

An investigation is presented that studies the response of a two-degree-of-freedom dynamic sliding system; that is a single-degree-of-freedom oscillator being fixed on top of a rigid block that can slide on its supporting shaking table along a horizontal axis when subjected to unidirectional dynamic or earthquake excitations along this horizontal axis. This problem appears to be of interest in predicting the dynamic and earthquake response of superstructures supported on a large foundation block capable of horizontal sliding by means of seismic sliding isolators. Special mock-ups are tested at the shaking table of Aristotle University for this purpose utilizing horizontal simulated earthquake excitations based on prototype earthquake ground motion recordings. The numerical results, which were obtained by a computer software developed for this purpose, are compared with the corresponding experimental measurements. The measured acceleration and displacement responses of the mock-ups appear to be, in all the examined cases, in reasonably good agreement with the numerical predictions. However, in certain cases, the numerically predicted sliding displacement of the rigid block appears to have an offset that differs from the sliding response that was observed during the experiments. This is more pronounced when there is no spring linking the rigid block with the shaking table and must be attributed to manufacturing tolerances of the mock-ups. It is demonstrated that the developed software, although it tries to represent such a rather complex problem in a simplified manner, can be useful at the preliminary design stage of structural systems resting on sliding isolators. Results from various experimental and numerical tests demonstrate that the oscillator’s response is generally made smaller by the sliding of the rigid block. This is true for a wide range of frequencies; however, there is a relatively narrow frequency window in which the oscillator’s response is amplified. This frequency window has a peak value that is slightly higher than the oscillator’s eigen-frequency when it is considered to be a single-degree-offreedom system fixed at its base.

Keywords

Earthquake excitation, numerical simulation, seismic isolation, measurements, sliding rigid block.