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Abstract 

Official medium-term rainfall forecasts failed to warn of the impending heavy 
rainfall in the Brisbane catchment during the summer of 2010–2011 with resulting 
catastrophic flooding causing loss of life, extensive property damage and 
disruption of economic activity in south-eastern Queensland, Australia. Since the 
flooding, the Australia Bureau of Meteorology has changed its method of 
forecasting from an empirical statistical scheme to the use of a general circulation 
model, the Predictive Ocean and Atmospheric Model for Australia (POAMA). 
More skilful forecasts, however, can be achieved through the use of an altogether 
different technique involving artificial neural networks (ANN), a form of machine 
learning.  Building on previous studies comparing the skill of the ANN forecasts 
for Gatton and Harrisville in the Brisbane catchment with output from POAMA, 
this study shows how monthly ANN rainfall forecasts can be further significantly 
improved through a technique referred to as “single-month optimisation”.   This 
technique enables the temporal variability in the influence of key climate indices 
to be better incorporated into the rainfall forecast. In particular, correlation 
coefficients exceeding 0.85 at a 12 month lead time can be achieved for both 
Harrisville and Gatton.   
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1 Introduction 

Prolonged and extensive rainfall over large areas of Queensland, coupled with 
already saturated catchments, led to flooding of historic proportions in Queensland 
in December 2010, extending into January 2011 [1]. Thirty-three people died in 
the 2010/2011 floods, and more than 78 per cent of the state (an area bigger than 
France and Germany combined) was declared a disaster zone, with over 2.5 
million people affected [1]. Some 29,000 homes and businesses suffered some 
form of inundation. The Queensland Reconstruction Authority estimated that the 
cost of flooding events to be in excess of AUS$5 billion. The scale of the disaster 
led to the establishment, in January 2011, of the Commission of Inquiry into the 
Queensland floods of 2010/2011 [1]. 
     The Brisbane River is the longest river (309 km) in south-east Queensland, with 
its source located in the Brisbane Range, 120 km north-west of the city of 
Brisbane. From there it makes its way south before joining the Stanley River, 
downstream of Somerset Dam, to run into Lake Wivenhoe [2]. This lake provides 
the main water supply for Brisbane, the state capital of Queensland, and was 
created by construction of the Wivenhoe Dam [2]. The dam was completed in 
1984, in response to severe flooding in 1974, with the principal aim of 
safeguarding the city of Brisbane from future floods. Nevertheless, in January 
2011 Brisbane experienced its second highest flood in over 100 years. Major 
flooding occurred throughout most of the catchment and an estimated 18,000 
properties were inundated [2]. 
     The 2010/11 Brisbane flood has been designated as a “dam release flood” by 
hydrologists appointed by the Insurance Council of Australia [2]. This suggests 
that the sudden release of water from the Wivenhoe Dam was a principal cause of 
flooding along the mainstream and tributaries of the Brisbane River [2]. These 
events remain contentious, and are the subject of a major class action lawsuit 
against the Queensland government, scheduled to be heard in court during 2016.   
     Exactly where and how much rain falls within a catchment will critically 
determine a dam’s effectiveness for flood mitigation [2], as well as how much 
water should be held before the onset of each summer wet season. The official 
rainfall forecasts issued by the Australian Bureau of Meteorology, BOM, do not 
provide adequately detailed information at the localised level, or with sufficient 
lead times.  The BOM forecasts are only provided to the public in the form of 
probabilities relative to the median, and do not differentiate between anticipated 
rainfall slightly above the median and an extreme rainfall event as occurred in 
January 2011. Until May 2013 these forecasts were based on a statistical scheme 
using an El Niño Southern Oscillation (ENSO) index as a primary predictor in a 
relatively simple statistical model [3, 4]. The BOM switched to the use of the 
Predictive Atmospheric Model for Australia (POAMA) which is a general 
circulation model, in June 2013 [5–7]. General circulation models, however, do 
not generally perform well at forecasting rainfall, despite substantial efforts to 
enhance performance over many years [8–10]. Various statistical models continue 
to be developed for rainfall prediction in Australia, generally using climate indices 
as inputs [11–14].   
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     Artificial neural networks, ANNs, a form of machine learning, provide a third 
potential technique for medium-term rainfall forecasting. While ANNs can be 
classified as a type of statistical model, they offer several important advantages 
over the more simple statistical models that were used by the BOM until May 
2013. ANNs can accommodate non-linear relationships, and test multiple inputs, 
particularly important when the influence of climate indices may vary 
geographically and temporarily in poorly understood ways [13]. ANNs have been 
applied to produce seasonal and monthly rainfall forecasts in many parts of the 
world [15–17], including Australia [18–21].   
     Our first attempt at using ANN models to forecast rainfall at two key locations 
in the Brisbane catchment was reported at the Seventh River Basin Management 
Conference [21]. In the present study, the ANN approach has been extended to 
investigate the application of a novel method of optimising the ANN models, in 
particular instead of optimising a given set of inputs for all months simultaneously, 
the program is provided with data for only a single month, i.e. all Januaries, then 
all Februaries, etcetera. In effect, this results in the optimisation of predicted 
rainfall for each month individually and thus the creation of a unique model for 
each month for all years.  These models are combined to arrive at a final forecast 
and corresponding skill score for the test periods of July 2004 to August 2011, and 
July 2004 to June 2014. This single-month optimisation technique is more time 
consuming, requiring the program to be run 12 times in order to have a result for 
every month of the year. The final monthly rainfall forecast is, however, 
significantly more skilfully measured in terms of root mean square error, mean 
absolute error and Pearson correlations coefficients.  

2 Data and methods 

The skill of a rainfall forecast using any statistical model, including ANNs, will 
depend on the quality and relevance of the data provided as input to the model, 
with longer time series generally giving a superior forecast. Gatton and Harrisville 
are both within the Brisbane catchment, and in close proximity to a grid area where 
comparative monthly forecasts have been published using the general circulation 
model POAMA [9]. Both stations have relatively long rainfall records. Gatton 
(station number 40082, Latitude 27.54° S, Longitude 152.34° E, elevation 89 m) 
opened in 1897, while Harrisville post office (station number 40094, Latitude 
27.81° S, Longitude 152.67° E, elevation 61 m) opened a year earlier in 1896.  
Both locations are still operating as weather stations today.   
     Variations in rainfall in many parts of the world, including the Brisbane 
catchment, are associated with large-scale climate phenomena which can be 
described by climate indices typically measuring changes in temperatures and 
pressures across oceans [22–24]. ENSO, a Pacific Ocean phenomena can be 
measured by both the Southern Oscillation Index (SOI) and a combination of four 
different Niño values (Niño 4, Niño 3.4, Niño 3, Niño 1.2). The Inter-decadal 
Pacific Oscillation (IPO) also measures pressure and temperature changes in the 
Pacific Ocean. The Indian Ocean Dipole measured by the Dipole Mode Index 
(DMI), is a measure of pressure and temperature changes in the Indian Ocean.   
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     Values for DMI and the four Niños were sourced from the Royal Netherlands 
Meteorological Institute Climate Explorer – a web application that is part of the 
World Meteorological Organisation and European Climate Assessment and 
Dataset project. Values for IPO were provided by Chris Folland from the UK Met 
Office. Values of SOI and also minimum and maximum temperatures used in  
the development of the local temperature composite were obtained from the 
Australian Bureau of Meteorology.   
     All of the above climate indices, local rainfall and a composite of temperature 
data from Brisbane Regional Office (station 40210) and Brisbane (Aero station 
40842), were provided as inputs to Neurosolutions Infinity software 
(NeuroDimensions Inc., Florida) and used to build probabilistic ANN models.  
Each attribute was lagged up to 12 months. The data was divided into training 
(75%), evaluation (15%) and test sets (10%).   
     Two approaches were used for ANN optimization. With the first approach, 
designated as “all-month optimization”, data for all 12 months of the year was 
included as input and optimised together, as in our previous studies [18–21]. With 
the second approach, designated as “single month optimisation”, forecasts 
corresponding to each calendar month were performed individually, so that 12 
optimisations were carried out to produce monthly rainfall forecasts for the entire 
year.  
     The two different approaches were compared for lead-times of 12 months for 
the test periods July 2004 to June 2014, and also July 2004 to August 2011.   
Comparisons with POAMA could only be made to August 2011, as the BOM has 
been unwilling to provide the output from POAMA used in operational forecasts 
as deterministic forecasts for point locations beyond this period (National Climate 
Centre, BOM, pers. comm. July 2014). It should be noted that while POAMA has 
only been used for operational forecasts since June 2013, it was being used to 
produce forecasts since 1997. The data used in this study are from POAMA 
Version 1.5, which was used by the BOM until August 2011.  
     Root Mean Square Error (RMSE), the Mean Absolute Error (MAE) and 
Pearson correlation coefficient (r) were used to compare the skill of rainfall 
forecasts generated by the two different optimisation techniques relative to 
observed rainfall, and to compare these forecasts with output from POAMA and 
also climatology (the long-term average).    

3 Results and discussion  

In previous studies using ANN models to forecast monthly rainfall for Gatton and 
Harrisville an all-month method of optimisation was used to forecast for one, two 
or three months in advance [19, 21]. To be specific, all months for all years were 
provided as input to the program, and the skill of the forecast calculated as the 
difference between the forecast and observed rainfall for each month averaged 
over the test period.  In the case of Gatton and Harrisville for 1 to 3 month leads, 
an average RMSE of 54 mms and 46 mms respectively was achieved for the 13 
year period of July 1997 to December 2010 [19]. This was better than the forecast 
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for POAMA for the same period, where a mean RMSE of 70 mms for both Gatton 
and Harrisville was reported [19].   
     In this study we choose a longer lead forecast time of one year (12 months) and 
make the comparison with the 8 month-lead for POAMA, the longest lead forecast 
available (Table 1). The test period for the comparison with POAMA is 7 years 
from July 2004 to August 2011.   

Table 1:  Skill parameters for monthly rainfall forecasting for Harrisville and 
Gatton on an annual basis for the test period July 2004 to August 
2011. 

Harrisville 
 RMSE (mm) MAE (mm) r 

Climatology 49.8 34.6 0.57 
POAMA 49.3 34.2 0.59 

All-month optimisation 39.4 29.8 0.78 
Single-month optimisation 28.4 19.1 0.88 

Gatton 
 RMSE (mm) MAE (mm) r 

Climatology 59.7 40.2 0.50 
POAMA 59.2 40.0 0.51 

All-month optimisation 49.9 34.7 0.70 
Single-month optimisation 32.4 22.2 0.91 

 
     The skill of the POAMA forecasts are almost the same as climatology (the 
long-term average) (Table 1). This is in part because of the way the POAMA 
values are calculated, which is that the BOM converts the output from  
POAMA into anomalies that are then added to climatology. 
     In contrast, the all-month and single-month optimisation are generated 
independently and give lower RMSE and MAE, and higher r-values for both 
Gatton and Harrisville (Table 1). The single-month optimisation gives the better 
result for all skill measures and for both sites (Table 1). The nature of  
the improvement in forecast skills can be illustrated through charting (Figures 1 
and 2).    
     As expected, climatology reflects the repeating seasonal periodic signal of 
rainfall, with higher rainfall during the summer months at Gatton (Figure 1) and 
Harrisville (Figure 2). These climatology signals are very similar to the forecast 
generated using POAMA for both Gatton and Harrisville, suggesting that POAMA 
adds very little to the overall skill of the forecast (Figures 1 and 2).   
     The all-month ANN forecasts produces a much better alignment between 
forecast and observed rainfall signals for Gatton (Figure 1) but in particular for 
Harrisville (Figure 2). Peaks and troughs corresponding to periods of heavier and 
reduced rainfall in different years are becoming differentiated (Figures 1 and 2). 
This becomes even more pronounced examining the ANN forecasts using single-
month optimisations (Figures 1 and 2). Of particular significance is the emergence 
of the peak corresponding to December 2010 for Harrisville, clearly indicating a 
forecast of higher monthly rainfall in comparison to the remainder of the 7-year 
test period. 

Water Resources Management VIII  7

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 196, © 2015 WIT Press



 
 

 

Figure 1: Forecast and observed monthly rainfall for Gatton with 12 months 
lead time: (a) climatology; (b) POAMA; (c) all-month optimisation; 
(d) single-month optimisation.  

 

(a) 

(b) 

(c) 

(d) 
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Figure 2: Forecast and observed monthly rainfall for Harrisville with 12 months 
lead time: (a) climatology; (b) POAMA; (c) all-month optimisation; 
(d) single-month optimisation.  
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(c) 

(b) 

(a) 
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     Deconstructing the forecasts for each month for the two different methods 
(Tables 2 and 3), it becomes evident how a more skilful forecast is achieved using 
the single-month method of optimisation. Comparing r-values for Gatton, it is 
evident that while skills scores in excess of 0.90 are achieved for all months for 
the single-month optimisation, they are highly variable for the all-month 
optimisation (Table 2). Indeed, the ANN has no skill at forecasting the lower 
rainfall months of April through to September when using the all-month 
optimisation technique (Table 2).   
 

Table 2:  Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and 
r values for monthly rainfall forecasts for Gatton at 12 month lead 
time using all-month and single month optimisation for the period 
July 2004 to August 2011.  

 All-month optimisation Single-month optimisation 

Month RMSE 
(mm) 

MAE 
(mm) 

r RMSE 
(mm) 

MAE 
(mm) 

r 

January 83.6 57.6 0.78 63.9 40.1 0.95 

February 50.3 44.6 0.70 29.0 23.4 0.97 

March 35.0 29.6 0.66 20.4 17.6 0.97 

April 47.7 43.6 -0.32 35.1 32.7 0.96 

May 32.9 23.2 0.07 22.3 17.5 0.94 

June 39.8 33.8 -0.50 15.8 13.6 0.88 

July 18.8 17.5 0.22 8.3 4.4 0.93 

August 28.6 22.5 -0.10 10.2 9.2 0.95 

September 39.0 26.3 0.08 15.4 12.5 0.98 

October 36.7 32.5 0.73 15.4 12.5 0.98 

November 60.1 40.1 0.74 37.0 24.5 0.99 

December 71.9 48.3 0.52 34.0 27.0 0.94 

 
 
     When undertaking an all-month optimisation the ANN must search for a best-
fit across all climate indices for all months simultaneously. The results from this 
study confirm that the ANN is favouring the months of higher rainfall when 
undertaking all-month optimisations (Tables 2 and 3). In the case of Harrisville 
achieving high r-values for January and December has come at the expense of 
better forecasts for the lower rainfall months (Table 3).     
     Contrast this result with the single-month optimisations, where skill scores in 
excess of r = 0.80 where achieved for most months (Tables 2 and 3). Clearly the 
ANN is able to achieve a skilful forecast for the lower rainfall months of April to 
September when it is able to optimise these months individually, that is without 
having to consider the other calendar months (Tables 2 and 3).  
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Table 3:  RMSE, MAE and r for monthly rainfall forecast for Harrisville at  
12 month lead time using (i) all-month and (ii) single month 
optimisation.  

 All-month optimisation Single-month optimisation 

Month RMSE 
(mm) 

MAE 
(mm) 

r RMSE 
(mm) 

MAE 
(mm) 

r 

January 48.4 42.0 0.77 41.0 36.2 0.85 

February 56.4 50.8 0.58 58.4 50.5 0.56 

March 42.5 35.7 0.44 28.0 23.1 0.90 

April  22.7 17.0 0.67 7.9 6.2 0.98 

May 39.0 26.6 0.28 21.1 18.9 0.96 

June 33.2 28.1 0.19 14.5 11.9 0.96 

July 26.2 22.9 0.19 7.0 6.2 0.95 

August 24.2 20.5 0.50 8.9 7.6 0.98 

September 19.7 16.9 0.14 6.2 4.7 0.98 

October 48.9 45.1 0.26 29.1 26.7 0.96 

November 68.1 50.6 -0.20 39.2 22.4 0.83 

December 39.1 22.7 0.91 23.4 17.3 0.98 

4 Conclusion 

In previous studies using ANNs to forecast monthly rainfall in Queensland  
[18–21], data for all 12 calendar months were optimised together for any given set 
of inputs. With the hindsight of this study, the all-month optimisation procedure 
would be expected to favour the influence of months with relatively high rainfall, 
compared to those with lower rainfall. This is evident in the results comparing all-
month with single-month optimisations (Tables 2 and 3).   
     Nevertheless the all-month optimisation approach consistently produced 
results with better skill than either climatology or POAMA (Table 1).     
     A complementary approach is demonstrated in this study where the ANN is 
optimised for each calendar month for all years individually, with a further 
significant improvement in skill (Figures 1 and 2, Tables 1–3). Of particular 
significance are the prominent peaks at December 2010 and January 2011 for the 
ANN forecasts using the single-month optimisation technique at Harrisville 
(Figure 2). This shows that the occurrence of very heavy rainfall can be forecast 
at long-lead times of at least 12 months.  
     The present study also shows that the monthly rainfall forecast skill using the 
all-month optimisation technique may be quite variable when individual months 
are considered (Tables 2 and 3). This can likely be attributed to variability in the 
influence of specified lagged climate indices at different times during the year  
[22–24]. Further exploration of the results, in particular an analysis of the relative 
contribution of the different climate indices for each month, and comparing all-
month and single-month optimisation, may provide important insight into which 
climate indices are most influential at different times of the year for Harrisville 
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and Gatton. This is will be the focus of a follow-on study, with an expanded 
number of runs for the single-month optimisations for both Gatton and Harrisville.  
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