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Abstract 

The inelastic response of stepped plates to concentrated loading is studied. An 
approximate analysis for determination of maximal residual deflections is 
developed for fully clamped plates. As an example, an eccentrically loaded 
circular plate is investigated in a greater detail. 
Keywords: circular plate, inelastic material. 

1 Introduction 

In the literature one can find a number of exact theoretical predictions and 
numerical solutions of problems of dynamic plastic behaviour of inelastic beams, 
plates and shells (Jones [1], Kaliszky [2, 3]). Since exact theoretical solutions are 
available only for relatively simple cases (plastic bending of straight beams or 
plates and shells remaining axisymmetric during the dynamic deformation) it is 
reasonable to extend the list of theoretical predictions making use of various 
simplifications. In the present paper the dynamic plastic behaviour of circular 
plates subjected to eccentrically applied concentrated loadings is studied. 

2 Problem formulation and basic hypotheses 

Let us consider a thin walled plate with smooth boundary ݎ ൌ  ሻ presented inߠሺ∗ݎ
polar coordinates (fig. 1). It is assumed that the plate is loaded by a concentrated 
force ܲ ൌ ܲሺݐሻ applied at the origin of coordinates.  
     In what follows, we consider the case of rectangular loading when 
 

ܲሺݐሻ ൌ ൜ ଴ܲ, 0 ൑ ݐ ൑ ,଴ݐ
ݐ																,0 ൐ .	଴ݐ

                                          (1) 
 

Here ݐ stands for the current time and ݐ଴ is a fixed moment of time. As regards 
the intensity of the loading ଴ܲ it is assumed to be of medium size according to 
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the classification used in the rigid plastic analysis (see Jones [1], Lellep and 
Mürk [4]). 
 

 

Figure 1: Stepped plate. 

     The material of the plate is assumed to be an ideal rigid-plastic material 
obeying the square yield conditions (Fig. 2).  
     Here ܯଵ,ܯଶ stand for principal moments whereas ܯ଴଴ ൌ ଴݄଴ߪ

ଶ/4 and 
଴ଵܯ ൌ ଴௡ܯ ,… ,଴݄ଵଶ/4ߪ ൌ  ଴ߪ ଴݄௡ଶ/4, provided ௝݄ is the current thickness andߪ
stands for the yield stress of the perfect plastic material. The thickness  

 
݄ ൌ ௝݄ (2) 

 
for ݎ ∈ ሺݎ௝, ݆ ௝ାଵሻ whereݎ ൌ 0,… , ݊. Here ݎ௝ ൌ ߠ ሻ andߠ௝ሺݎ ∈ ሺ0,2ߨሻ. The contour 
of the plate is given by the equation  
 

ݎ ൌ ሻߠ௡ାଵሺݎ ൌ ሻߠሺ∗ݎ (3) 
 
where ݎ௡ାଵሺߠሻ is a given differentiable function of the polar angle. It is assumed 
that the plate is fully clamped at the edge. 
     It is assumed that the displacement field can be determined according to the 
approximate method of mode form motions (Jones [1]). According to this 
concept the displacement rates can be presented in the form  
 

ܹሺݎ, ,ߠ ሻݐ ൌ ଴ܹሺݐሻ݂ሺݎ,  ሻ. (4)ߠ
 
     In eqn (4) the function ଴ܹሺݐሻ depends on time only. In the present paper the 
mode form corresponding to the conical deformation field 
 

݂ሺݎ, ሻߠ ൌ 1 െ
ݎ

ሻߠሺ∗ݎ
 (5) 

 

will be used. 
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Figure 2: Yield condition. 

     The aim of the paper is to determine the approximate values of maximal 
residual deflections corresponding to the dynamic loading (1). 

3 External and internal energy dissipation 

Evidently, the external power caused by inertial forces can be calculated as 
 

ሶܦ ௘ଵ ൌ ∬ െߤ ሷܹ ሶܹ ݀ܵௌ                                           (6) 
 
where S stands for the surface of the middle plane of the plate and ߤ is the mass 
density. Here ሶܹ  is the deflection rate (velocity) and ሷܹ  – the acceleration of 
points lying at the middle surface. The rate of the external work due to the 
concentrated loading is 
 

ሶܦ ௘ଶ ൌ ܲ ሶܹ ଴                                                     (7) 
 
where according to eqns (4), (5) 
 

ሶܹ ଴ ൌ ሶܹ ሺ0, ,ߠ  ሻ.                                                 (8)ݐ
 
Substituting (2), (4), (5) in (6) yields 
 

ሶܦ ௘ଵ ൌ െߤ ሷܹ ଴ ሶܹ ଴ ׬ ∑ ׬ ݄݆
൅1݆ݎ
݆ݎ

௡
௝ୀ଴

ଶగ
଴ ቀ1 െ

௥

௥∗
ቁ
ଶ
 (9)             .ߠ݀ݎ݀ݎ

 
The total external work rate is  
 

ሶܦ ௘ ൌ ሶܦ ௘ଵ ൅ ሶܦ ௘ଶ.                                               (10) 
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The dissipation of the plastic energy at a hinge line ܮ௜ becomes (Jones [1], 
Sawczuk and Sokol-Supel [5]) 
 

ሶܦ ௜ ൌ෍ න ݆ܯ

൅1݆ݎ

݆ݎ

௡

௝ୀ଴

∆߮௜(11) ݎ݀ݎ 

 
where the slope discontinuity at the hinge line at ߠ ൌ  ௜ߠ
 

∆߮௜ ൌ
߲ ሶܹ

߲݊
ฬߠ௜ା

െ
߲ ሶܹ

߲݊
ฬߠ௜ି

. (12) 

 
Here ݊ stands for the normal direction to the line ܮ௜. 
     However, if a continuous field of yield lines occurs then 
 

ሶܦ ௜ ൌ ሶܹ ଴෍݆ܯ න න
1
∗ݎ

ଶగ

଴

൅1݆ݎ

݆ݎ

௡

௝ୀ଴

ቆ1 ൅ 2
ᇱଶ∗ݎ

ଶ∗ݎ
െ
ᇱᇱ∗ݎ

∗ݎ
ቇ ߠ݀ݎ݀ݎ ൅ ሶܦ ௜௖. (13) 

 
In eqn (13) the term ܦሶ ௜௖ corresponds to the dissipation of energy at the hinge 
formed at the clamped edge. Since the deflection rates correspond to (4), (5) one 
can conclude that  
 

ሶܦ ௜௖ ൌ ሶܹ ଴ሺݐሻΦሺߠሻ (14) 
 
where the second multiplier depends on the coordinate ߠ only. 
     Starting from the equality ܦሶ ௜ ൌ ሶܦ ௘ (see Jones [1]) and making use of 
eqns (7)–(14) one obtains  
 

ܲ ሶܹ ଴ െ ߤ ሷܹ ଴ ሶܹ ଴ න ෍ න ݄݆

൅1݆ݎ

݆ݎ

௡

௝ୀ଴

ଶగ

଴

൬1 െ
ݎ
∗ݎ
൰
ଶ

ߠ݀ݎ݀ݎ ൌ 

ൌ ሶܹ ଴෍݆ܯ න න
1
∗ݎ

ଶగ

଴

൅1݆ݎ

݆ݎ

௡

௝ୀ଴

ቆ1 ൅ 2
ᇱଶ∗ݎ

ଶ∗ݎ
െ
ᇱᇱ∗ݎ

∗ݎ
ቇ ߠ݀ݎ݀ݎ ൅ ሶܹ ଴ߔ. 

(15) 

 
It immediately follows from (15) that the acceleration 
 

ሷܹ ଴ ൌ
1
ܭ
ቐܲ െ ߔ െ෍݆ܯ න න

1
∗ݎ

ଶగ

଴

൅1݆ݎ

݆ݎ

௡

௝ୀ଴

ቆ1 ൅
ᇱଶ∗ݎ

ଶ∗ݎ
ቇ  ቑ (16)ߠ݀ݎ݀ݎ

 

6  Structures Under Shock and Impact XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 141, © 2014 WIT Press



where 
 

ܭ ൌ නߤ ෍ න ݄݆

൅1݆ݎ

݆ݎ

௡

௝ୀ଴

ଶగ

଴

൬1 െ
ݎ
∗ݎ
൰
ଶ

 (17) .ߠ݀ݎ݀ݎ

4 Asymmetrically loaded circular plate 

Let us consider now an eccentrically loaded circular plate with stepped thickness. 
Let R be the radius of the plate and a – the distance between the center O of the 
plate and the origin of coordinates	 ଵܱ (fig. 3). Assuming that the origin of 
coordinates is located at 	 ଵܱ one can easily define. 
 

௡ାଵݎ ൌ ߠݏ݋ܿܽ ൅ ඥܴଶ െ ܽଶ݊݅ݏଶ(18) .ߠ 
 
 In order to define the function ߔ in (14) let us consider the hinge circle 
at the clamped edge of the plate. Let A be the current point at the edge and ߙ be 
the angle between OA and the x-axis (fig. 3). Let ߰ be the angle between ܱܣ

 and ܱ ଵܣ . In this case 
 

߲ ሶܹ

߲݊
ൌ
߲ ሶܹ

ݔ߲
ߙݏ݋ܿ ൅

߲ ሶܹ

ݕ߲
 (19) ߙ݊݅ݏ

 
whereas 
 

߲ ሶܹ

ݔ߲
ൌ
߲ ሶܹ

ݎ߲
 ,ߠݏ݋ܿ

߲ ሶܹ

ݕ߲
ൌ
߲ ሶܹ

ݎ߲
 .ߠ݊݅ݏ

(20) 

 
 

 
 

Figure 3: Hinge circle. 
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     It follows from (19), (20) that  
 

߲ ሶܹ

߲݊
ൌ െ

ሶܹ ଴
∗ݎ
 (21) .߰ݏ݋ܿ

 
     Looking at the triangle ܱ ଵܱܣ in Fig.3 one can easily conclude that 
 

߰ݏ݋ܿ ൌ െ
1

∗ݎ2ܴ
ሺܴଶ ൅ ଶ∗ݎ െ ܽଶሻ. (22) 

 
     Combining (21), (22) with (11)–(14) one can see that  
 

ሻߠሺߔ ൌ െܯ௡
1

ଶ∗ݎ2ܴ
ሺܴଶ ൅ ଶ∗ݎ െ ܽଶሻ. (23) 

 
where ݎ∗ is defined by (18). Thus  
 

ᇱ∗ݎ ൌ െܽߠ݊݅ݏ െ
ܽଶߠݏ݋ܿߠ݊݅ݏ

√ܴଶ െ ܽଶ݊݅ݏଶߠ
. (24) 

 
where prim denotes the differentiation with respect to the angle ߠ. 
     The accelerations can be calculated according to (16), (17) and (18), (24) 
separately for the stages when ܲ ൐ 0 and when ܲ ൌ 0, respectively. 
     During the first stage for ݐ ∈ ሺ0,  ଵሻݐ
 

ሶܹ ଴ሺݐሻ ൌ ሷܹ ଴ݐ, 

଴ܹሺݐሻ ൌ
1
2

ሷܹ ଴ݐଶ. 
(25) 

 

Similarly for the final stage of motion for ݐ ∈ ሺݐଵ,   ଶሻ one hasݐ
 

ሶܹ ଴ሺݐሻ ൌ ሷܹ ଵሺݐ െ ଵሻݐ ൅ ሶܹ ଴ሺݐଵሻ, 

଴ܹሺݐሻ ൌ
1
2

ሷܹ ଴ሺݐ െ ଵሻଶݐ ൅ ሶܹ ଴ሺݐଵሻሺݐ െ ଵሻݐ ൅ ଴ܹሺݐଵሻ. 
(26) 

 

where ሷܹ ଵ denotes  the acceleration at ݎ ൌ 0 during the second stage of motion.  

5 Numerical results and discussion 

The plate with two different thicknesses ݄଴ and ݄ଵ is studied in a greater detail. 
The circular plate loaded at the origin of coordinates is studied whereas  
 

݄ ൌ ൜
݄଴, ݎ ∈ ሺ0, ,ଵሻݎ
݄ଵ, ݎ ∈ ሺݎଵ, ሻ∗ݎ .

    (27) 
 

     Let us denote p ൌ ܲ/ ௦ܲ , where ௦ܲ ൌ  ଴ is the static limit load, providedܯߨ2
the load is applied at the center of the plate. The results of calculations are 
presented in Figs 4–6 where the maximal residual deflection versus the time 
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Figure 4: Maximal residual deflections (ݎଵ ൌ 0.2ܴ). 
 

 

Figure 5: Maximal residual deflections (ݎଵ ൌ 0.5ܴ). 
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Figure 6: Maximal residual deflections (ݎଵ ൌ 0.8ܴ). 

interval when the load is active is depicted. Here ܽ ൌ 0.1ܴ, ݄ଵ ൌ 0.8݄଴. In fig. 4 
ଵݎ ൌ 0.2ܴ, in fig. 5 ݎଵ ൌ 0.5ܴ and in fig. 6 ݎଵ ൌ 0.8ܴ. It can be seen from figs 4-
6 that the greater is ݐଵ the larger is the deflection ଵܹ , as might be expected. On 
the other hand, the greater is the radius ݎଵ the smaller is corresponding residual 
deflection. 

6 Concluding remarks 

An approximate analysis of plates under impact loading was developed. The 
method is based on the classical method of “mode form motions”. In the present 
paper this concept was extended to the case of non-axisymmetric bending of 
plates. Evidently, the method can be extended to the case of a distributed 
loading. 
     The method suggested above can accommodate plates made of functionally 
graded materials choosing the step locations and different thicknesses in 
accordance to the geometrical parameters at mesh points. 

Acknowledgements 

The support from the Estonian science Foundation through the Grant ETF9110 
and from the Target financed project IUT 2057 are acknowledged. 

10  Structures Under Shock and Impact XIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 141, © 2014 WIT Press



References  

[1] Jones, N. Structural Impact. CUP, Cambridge, 575, 1989. 
[2] Kaliszky, S. Dynamic plastic response of structures. In Sawczuk A, Bianchi 

G, editors, Plasticity Today: Modelling, Methods and Applications. Elsevier 
Science Publishers, London, pp. 787–820, 1984. 

[3] Kaliszky, S. Plasticity. Theory and Engineering Applications. Elsevier, 
Amsterdam, 505 p, 1989. 

[4] Lellep, J., Mürk, A. Asymmetric dynamic plastic behaviour of circular 
plates. Proceeding 2nd International Conference Optimization and Analysis 
of Structures. Tartu, pp. 70  75, 2013. 

[5] Sawczuk, A., Sokol-Supel, J., Limit Analysis of Plates. Polish Scientific 
Publishers, PWN, Warszawa, 252 p, 1993. 

[6] Symonds, P. S. Elastic, finite deflection and rate effects in a mode 
approximation technique for plastic deformation of pulse loaded structures, 
Journal of Mechanical Engineering Science, Vol. 22, pp. 189–197, 1980. 

Structures Under Shock and Impact XIII  11

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 141, © 2014 WIT Press

–




