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Abstract 

Plastic behaviour of square plates subjected to impact loading is studied. It is 
assumed that the plates are formed from concentric squares with piece wise 
constant thickness. An approximate method of mode form motions resorting to 
the energy balance is used in order to predict maximal residual transverse 
deflections for plates made of Johansen´s material. Numerical results are 
presented for plates with two different thicknesses.  
Keywords: square plate, impact loading, inelastic material, optimization. 

1 Introduction 

The problems of dynamic behaviour of structural elements have become of 
increasing interest in recent years. The dynamic plastic behaviour of beams and 
axisymmetric plates was investigated by many authors .  Reviews of these papers 
are presented by Jones [1], Yu and Chen [2], Stronge and Yu [3]. However, the 
only exact theoretical solution on dynamic response of a non-axisymmetric 
plastic plate is obtained by Cox and Morland [4] who investigated within the 
framework of thin plate theory the behaviour of square plates subjected to a 
rectangular pressure pulse. 
     Jones [1], Cox and Morland [4] and other authors have studied square plates 
of constant thickness made of a Johansen’s material. Blast loaded square plates 
are investigated by Olson et al. [5]. An approximate technique was developed by 
Baker [6]. Zhu [7] obtained both, theoretical numerical predictions and 
experimental results for transient deformation modes of square plates subjected 
to explosive loadings. It was observed that numerical predictions were in a good 
agreement with experimental results. 
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     The phenomenon of saturated impulse in elastic-plastic square plates was 
investigated by Zhu and Yu [8] in the case of a fully clamped plate. 
     Lellep and Mürk [9, 10] presented a method for determination of residual 
deflections of stepped annular and square plates subjected to impulsive loadings. 
     Approximate procedures for investigation of rigid-plastic rectangular plates 
subjected to dynamic loadings are developed by Jones et al. [11, 12], Yu and 
Chen [13]. Theoretical predictions suggested by Jones and Symonds give 
surprisingly good agreement with corresponding experimental results. 
     In the present paper this approach is used in the case of small deflections of 
stepped square plates subjected to impact and impulsive loadings. 

2 Formulation of the problem 

In what follows, the behaviour of fully plastic plates will be studied in the 
framework of the classical theory of thin plates and the concept of a rigid-plastic 
body. 
     Let us consider a square plate with a side length 2L (fig. 1). The plate under 
consideration is subjected to the initial impact loading. 
 

 

Figure 1: A square plate. 

     In the following we shall consider the cases when at the initial moment t=0 
p>0 and when p=0 (now the motion of the plate is caused by the inertia). 
     In the latter case we assume that the initial kinetic energy K0 is given whereas 
the initial transverse velocity field v0(x, y) may be unknown. It is assumed herein 
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that the origin of the coordinate system Oxy is placed at the centre of the plate 
and the axes are directed towards diagonals of squares (fig. 1). 
     We are considering plates with piece wise constant thickness. Thus it is 
assumed that 

 jhh 
  

for   jDyx , ; nj ,...,0 . We restrict our attention to the concentric case when 

the inner and outer boundaries of regions jD  are squares. Let the boundaries of 

regions of constant thickness intersect x- and y- axis at points 0, L21 , …, 

Ln 2 , L2 . Here 00  , 11 n . 

     It is well known in the engineering and fracture mechanics that defects like 
flaws, notches, cracks are probably unavoidable during manufacturing as well as 
under repeated loading of structural elements. 
     It is assumed herein that the plate under consideration has cracks at re-entrant 
corners of steps. Let jc  be the length (deepness) of the straight crack located at 

the inner boundary of the region jD .  We assume that the cracks are stable part 

through surface cracks. The development and propagation of cracks is outside 
the scope of current paper. 
     The aim of the paper is to assess the maximal deflections of the stepped plate 
subjected to the initial impact or impulsive loading. 

3 Governing equations 

According to the basic hypotheses of the concept of a rigid- plastic body it is 
assumed that elastic stains are small in comparison with plastic strains so that 
elastic counterparts of strains can be neglected. The material of plates is an 
isotropic homogeneous material which can be treated as an ideal plastic material 
obeying Johansen’s yield condition given by equalities 
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and 

 
,0

2 MM   (2) 

where 21,MM  stand for principal moments and 0M  is the yield moment. The 

moments xyyx MMM ,,  with shear forces yx QQ ,  have to satisfy equilibrium 

equations  

 
0

0

2

2
































y
xyy

x
xyx

yx

Q
x

M

y

M

Q
y

M

x

M

t

W
hp

y

Q

x

Q 

 (3) 

Structures Under Shock and Impact XII  5

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 126, © 201  WIT Press2



Here   stands for the material density, p  is the intensity of transverse loading 

and W  is the transverse deflection. If the motion of the plate is due to inertia we 
can take 0p .  It is well known that the curvatures corresponding to (3) have 

the form 

 yx

W

y

W

x

W
xyyx 












2

2

2

2

2

,,   (4) 

4 Integration of governing equations and residual deflections 

We assume that the deformation process is symmetrical with respect to 
coordinate axes. Due to the symmetry we can restrict our attention to the first 
quadrant only. Following Cox and Morland [4] we introduce a new variable 
 

 
 yx

L
z 

2

1
 (5) 

 
Evidently, in the first quadrant 10  z . The method of mode form motions will 
be used in the present paper. This method was suggested by Martin and Symonds 
(see Symonds [14]). It was established that the approximate theoretical 
predictions are in good correlation with exact solutions and experimental results 
(see Baker [6], Jones [1]). 
     Perhaps the simplest kinematically admissible transverse velocity distribution 
is  
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where  tW0  stands for an unknown function of time. Evidently,  tW0
  is the 

transverse velocity of the central point of the plate. 
     Eliminating of shear forces yx QQ ,  from (3) and taking (5), (6) into account 

leads to the equation 
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which holds good in the region jD  ( nj ,...,0 ). Here we interpret jD   as the 

part of the region jD  which belongs to the first quadrant only where

 1,  jjz  . 
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     In (7) 0W  stands for the acceleration of the central point of the plate at 0z . 

It is assumed to be a function depending on time only. We are looking for the 
solution of (7) in the form  
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for   jDyx ,  or  1,  jjz   ( nj ,...,0 ). Here jM  stands for the limit 

moment for the part jD  of the plate. Thus, 4/2
0 jj hM  , 0  being the yield 

stress of the material. Functions jF  ( nj ,...,0 ) in (8) are unknown functions 

depending on the variable z. 
     Boundary conditions at the edge can be obtained from the relation at an 
inclined edge (see Jones [1], Lellep and Mürk [9]) 
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From mechanical considerations it is evident that  nM  and  nQ  are continuous 

when crossing the lines jz   ( nj ,...,1 ). Thus  
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and 
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for each 1,...,j n . 

     Finally one has to check if the stress field is statically admissible at each point 
of the plate. Since at jz   a crack with maximal deepness jc  is located the 

maximal bending moment sustained by the plate is 1jjM  where 10  j .  

     Substituting (8) in (7) after appropriate transformations one obtains 
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for  1,j jz    ; nj ,...,0 . 
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     It is easy to recheck that the last equation has the solution 
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where jB  and jC  are arbitrary constants. 

5 Determinations of the acceleration 

It can be easily shown that the acceleration 0W  at the centre of the plate is a 

constant. Thus one can easily integrate the acceleration which results in 

  0000 WtWW   , (14) 

and 
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where the initial condition   000 W  has been taken into account. 

     It follows from (14), (15) that the maximal residual deflection is 
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Let us consider the case p=0 and n=1 in a greater detail. Evidently, in the central 
region 0F  must be finite. This yields 000  CB  and  

  zWhF  2000
  (17) 

     Now jump conditions (10), (11) give for a simply supported plate 
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     Making use of (9), (13) one obtains the acceleration 
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for the simply supported plate. 
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     Substitution of (19) in (16) leads to the residual deflection  
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6 Numerical results and discussion 

Results of calculations are presented for the case of plates with single step in  
figs. 2–5. 
 

 

Figure 2: Maximal residual deflections of plates of constant thickness. 

     Maximal residual deflections 1w  are presented in figs. 2 and 3 in the case of a 

square plate subjected to impulsive loading. Here and in the rest illustrations the 
following notation is used 
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     The quantity V  stands for the volume of the plate. Different curves in fig. 2 
are calculated for different values of the crack parameter  . Note that 1  in 
the case of a plate without cracks. Alternatively, if 0 , then the crack has 
penetrated through the plate. It is somewhat surprising that the maximal residual 
deflection only slightly depends on the crack length (fig. 2). However, the 
existence of the solution essentially depends on   as it can be seen from fig. 2. 
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Figure 3: Maximal residual deflections of stepped plates. 

     Bending moment   0/ MMm n  distributions are presented in fig. 4. 

Different curves in Fig. 4 are obtained for different values of the volume 
parameter V. Curves presented in fig. 4 are calculated for the plates without 
crack (here 1 ). 
 

 

Figure 4: Bending moment m  distributions for simply supported plates. 

     It can be seen from fig. 4 that the bending moment  nM  only slightly 

depends on the parameter v  in the case of simply supported plates. 
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     The maximal permanent deflection is presented in fig. 5 by line 1 versus  
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where 0.593  . 

     The coefficient 
B

L
   is introduced in order to compare the results obtained 

by Jones et al. [11, 12] for rectangular plates with those corresponding to square 
plates. The rectangular plates have sizes 2B and 2L whereas B<L. It is reasonable 
to compare permanent transverse deflections of a square plate with transverse 
deflections of such rectangular plates whose shorter edge is equal to the edge of 
the square plate. 
     Curves 2–5 in fig. 5 present theoretical predictions by Jones et al. [12]; 
curve 2 corresponds to the case of infinitesimal deflections, curves 3–5 
correspond to finite deflection theories with various yield conditions. Curve 3 
presents the relationship between transverse deflections and the initial kinetic 
energy in the case of the maximum normal stress yield condition whereas 
curves 4 and 5 are associated with circumscribing and inscribing yield criterion, 
respectively. 
 

 

Figure 5: Maximum permanent transverse displacement. 

     Triangles, squares and circles in fig. 5 denote the experimental results on 
aluminium 6061-T6 plates obtained by Jones et al. [12] It can be seen from fig. 6 
that theoretical predictions suggested in the present paper compare favourably 
with predictions by Jones for infinitesimal deflections. In the range of small 
deflections theoretical results are close to the experimental data. The 
discrepancies of results in the range of large deflections are not surprising as 
membrance forces are neglected in the current study. 
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7 Concluding remarks 

An approximate method of determination of residual deflections of pure plastic 
square plates has been developed. The plates have piece wise constant thickness 
and are subjected to the initial impact loading.  
     It is assumed that the material of plates obeys Johansen’s yield condition and 
associated flow law. Theoretical predictions are obtained for plates with arbitrary 
number of concentric steps. The method can be easily extended to the case of 
blast loaded square plates. 
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