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Abstract 

High energy beams of elementary particles play a key role in laboratories 
working in fundamental research on particle physics. For several reasons (beam 
dump, secondary particle production etc.), these beams may be driven against 
solid structures. During such interactions, dynamic phenomena, very similar to 
those taking place after a mechanical impact, might occur in the hit solids. The 
studies of such dynamic thermo-mechanical problems are usually made via 
numerical methods. However, an analytical approach is also needed to provide 
reference solutions for the numerical results. In this paper a general introduction 
to these thermo-mechanical phenomena is first presented, followed by an 
example of the analytical solution for a graphite rod used as a beam target to 
produce secondary particles. The method allows the computation of the dynamic 
transient elastic stresses induced by a fast proton beam hitting off-axis the target. 
An exact solution for the temperature field is first obtained, using Fourier-Bessel 
series expansion. Quasi-static thermal stresses are then computed as a function of 
the calculated temperature distribution, making use of the thermoelastic 
displacement potential and of the Michell solution for the equivalent isothermal 
two-dimensional stress problem. Finally, the contribution of dynamic stresses 
due to longitudinal and bending stress waves is determined by means of the 
modal summation method, in the hypothesis of plane strain behaviour.  
Keywords: Particle beams, particle impact, thermal stresses, dynamic thermal 
stresses. 
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1 Introduction 

1.1 High energy particle beams 

CERN's purpose is to study the foundations of the structure of matter. Its sphere 
of activity is high energy physics, also known as elementary particle physics.  
Specifically, CERN designs, builds and operates high-energy accelerators and 
detectors.  
     In the accelerators are stored the particle beams which, circulating at 
relativistic energies, represent the main tool for CERN research.  
     These particle beams often interact with solids for several reasons: to clean 
the beam from the undesired particle halo surrounding the focused beam or 
absorb irregular beam losses (beam collimators), to create a barrier between 
different beam environments (vacuum, air and so on), to discharge the 
potentially highly destructive beam from the accelerator (beam dumps), to 
produce secondary particles via interaction with the atomic nuclei of the solids 
(beam targets). Beam targets are usually rods (though plates or cubes may also 
be found), which must safely undergo many rapid thermal cycles, without 
exceeding the elastic limit of the material. The analysis of the modes of failure of 
these components has shown that the wave and vibratory phenomena induced by 
thermal shocks play a very important role in the structural integrity.  

1.2 Dynamic phenomena induced by thermal stress 

When high energy particles interact with matter, thermal energy is produced 
inducing sudden temperature increase. This interaction is simulated from the 
energetic point of view with dedicated codes like FLUKA-2001. If the duration 
of the interaction is very short (of the order of milliseconds or less), the thermal 
expansion of the impacted material is partly prevented by its inertia. This gives 
birth to dynamic stresses propagating through the material with the velocity of 
sound as in structures hit by another solid.  
     These phenomena were studied by Bargmann [1] for the case of a uniformly 
rapidly heated rod on the basis of Laplace transforms and by Sievers [2] for thin 
rods and disks, making use of Fourier and Fourier-Bessel series with some 
particular boundary conditions. However, the analysis of more complicated cases 
is still necessary since the problem of non-uniform, non-axisymmetric heating 
was not solved. In fact, particle beams usually impact cylindrical targets in form 
of small spots, ideally concentric, but in practice always eccentric, because of 
mechanical misalignments. This induces also lateral oscillations leading in some 
cases to the collapse of the structure (Figure 1).  
     Usually these calculations, which involve nonlinearities coming from the 
temperature dependent properties of the material, are done using numerical 
methods (e.g. Finite Elements). Nevertheless, some preliminary estimations, to 
assess the degree of safety of the structure and to provide reference solutions, are 
largely needed.  In this paper a method to evaluate quasi-static and dynamic 
stresses in a cylindrical rod, made of an ideally elastic material, is presented. 
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Figure 1: Example of a metallic target rod bent and broken under the effect of 

transverse oscillations induced by a thermal shock. 

2 Linear theory of thermoelasticity for an isotropic elastic 
body 

2.1 Introduction 

We consider the problem of linear thermoelasticity for the case of isotropic 
elastic solids. In the general expression of fully coupled thermoelasticity, the 
mechanical quantities depend upon the temperature field and vice versa. 
     Solids experience dilatational strains when subject to changes in temperature 
because of volumetric expansions. On the other hand, the rate of dilatational 
strain is a source of heat and hence of temperature changes. 
     The sets of equations governing linear thermoelasticity are derived from the 
general principles of thermodynamics (Nowacki [3], Boley and Weiner [4]). 
These relations represent the linear thermoelastic stress-strain relation (also 
known as the Duhamel-Neumann form of Hooke’s law) (1), the equations of 
motion (2) and the heat conduction equation (3). In indicial notation, the stress-
strain relation takes the following form: 

( ) ( )0232 TTijijkkijij −+−+= αµλδµεελδσ   (1) 

where σij and εij are the components of the stress and strain tensor respectively, 
λ and µ are Lamé’s constants, T is the temperature, T0 is the temperature of a 
stress-free reference state, α is the coefficient of linear thermal expansion and δij 
is the Kronecker delta. 
When neglecting body forces, the equation of motion becomes: 

ijij uρσ =,       (2) 
where ρ is the mass density and ui are the components of the displacement 
vector. The wave equation can be obtained by introducing eqn (1) into eqn (2). 
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     Finally, the heat conduction equation, provided that the ratio (T-T0)/T0 is 
sufficiently small and no heat is generated in the reference volume, is given by: 

( ) kkEii TTckT εαµλρ 0, 23 ++=     (3) 
where k is the thermal conductivity and cE is the specific heat at constant 
deformation which in the present linear theory may be replaced by the specific 
heat at constant volume cv. 

2.2 Thermoelastic dissipation 

In eqn (3), the mechanical coupling term is given by the last term on the right 
hand side of the equation. This term shows that a variation of strain is usually 
accompanied by variations in temperature and hence a flow of heat. Thus, the 
whole process gives rise to an increase of entropy. This phenomenon is known as 
thermoelastic dissipation and leads, in case of thermally excited dynamic 
phenomena, to what is known as thermoelastic damping. Many studies exist on 
this subject, but in this paper we will assume that the coupling term in eqn (3) is 
negligible as compared to the other terms and thus the temperature field is not 
affected by the variations of strain: this assumption gives birth to what is known 
as uncoupled thermoelastic theory. 
     According to Boley and Weiner [4] (on the basis of data from Goodier [5]), in 
the quasi-static case, this assumption is justified if it is verified that: 

1<<δ        (4) 
where δ is a nondimensional parameter given by 

( )
22

0
2223

ev vc
T

ρ
αµλ

δ
+

=      (5) 

with the velocity of dilatational waves in an elastic medium being denoted by: 

ρ
µλ 2+

=ev       (6) 

For graphitic materials eqn (4) is satisfied since δ is in the range of 3÷6x10-5, 
while for a steel it is between 0.01 and 0.02. 
     If effects of inertia must be taken into account, satisfying eqn (4) might not be 
sufficient to neglect coupling. However, the same author has shown that in a 
predominantly unidirectional body, as the one of interest, the thermoelastic 
damping can be neglected on short time scales (~1s). Thus, the linear 
thermoelastic problem of rapid heating becomes a weakly coupled problem, in 
that the strain is influenced by the temperature distribution but not the inverse, 
making it much easier to treat.  

3 The analytical approximate model  

On the basis of the theory presented, an analytical model has been developed to 
study the thermomechanical dynamic response of isotropic rods to rapid thermal 
shocks. As an introductory example, this method is applied to a graphite rod used 
in the target station of the CNGS (Cern Neutrino to Gran Sasso facility), 
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impacted by a proton beam. The CNGS experiment aims at obtaining a beam of 
neutrinos to be sent underground to a detecting station some 700 km away from 
CERN facilities (Elsener [6]).  
     The graphite cylindrical rod is simply supported at its extremities and is hit 
off-axis by two 400GeV proton bursts each lasting tsp=10µs with a separation of 
50ms. For this study we will focus only on the first pulse, assuming that the 
proton beam hits the cylinder parallel to the axis with a given eccentricity 
(Figure 2). It is assumed that the energy distribution induced by the beam is 
uniform along the z-axis and gaussian in the r-θ plane. Thanks to the assumption 
of weak coupling, the method can be outlined by the following sequential steps: 

1. The uncoupled heat conduction equation is solved for t>tsp and the 
exact temperature distribution T(r,θ, t) is found (T is constant along the 
rod axis z). 

2. Given T(r,θ, t), quasi-static stresses are calculated for the plane-strain 
case in two stages: 

a. Eqn (1) is solved not considering the boundary conditions. 
b. Boundary conditions are restored solving an ordinary 

isothermal elastic problem. 
3. Axial dynamic stresses are calculated using the Modal Summation 

Method, via the application of two fictitious equivalent excitations at 
the rod extremities, induced by the quasi-static stress distribution. 

The thermodynamic and mechanical properties of materials are in general 
temperature dependent, and this is taken into account in the numerical analyses; 
however to solve the problem analytically, we have assumed here some 
averaged values. This assumption permits also to assume T0=0 as reference 
temperature, replacing T- T0 with T. 
     More details on the method can be found in Bertarelli [7] and [8]. 
 

 
 

Figure 2: Target rod scheme and reference system. The rod length L is 100 mm 
and the radius R 2.5 mm. The beam hits the rod with a 1.5 mm 
eccentricity and has, at its centre, a maximum energy density UMax of 

kgJ51061.8 × . The total deposited energy QT is 407 J (i.e. 4.07x107  

W at a constant rate during 10 µs). 
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3.1 Thermal analysis 

The temperature distribution is calculated from eqn (3), which, after removing 
the coupling term, becomes in polar coordinates: 

t
TT

rr
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rr
T

∂
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=
∂

∂
+

∂
∂

+
∂
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κθ
111

2

2

22

2
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To define the initial conditions we assume that during the impact time tsp no 
diffusion process takes place and therefore the initial temperature distribution at 
t=tsp is simply given by: 

v
sp c

rUrTtrT ),(),(),,( 0
θθθ ==    (8) 

where U(r,θ) is the deposited energy per unit mass with gaussian distribution. 
     The boundary conditions are derived from the hypothesis of adiabatism, 
which can be retained thanks to the short duration of the phenomenon.  

0),,(
=

∂
∂

r
tRT θ      (9) 

Making use of the Separation of Variable method, and expressing the initial 
condition as a Fourier series whose nth harmonic term (cosine or sine) is Hn(θ) , 
we can obtain the solution in the following form: 

∑∑ −=
n s

n
t

snnsn HerJCtrT sn )()(),,(
2

,
,, θλθ κλ  (10) 

where Jn is a Bessel function of the first kind of order n, Cn,s are numerical 
coefficients obtained from the initial condition (8) and λn,s are the eigenvalues of 
the problem obtained by the application of the adiabatic condition (9). 
   The analysis of the solution shows that the time necessary to reach thermal 
equilibrium is of the order of 0.4s. This confirms that the time scale of interest is 
actually limited to some tenths of second. 
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Figure 3: Temperature as a function of time at various locations. 
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3.2 Quasi-static analysis 

Quasi-static stresses can be obtained by adapting a method developed by 
Goodier [9], [10], applied to the plane-strain case (hypothesis of a long cylinder) 
assuming that longitudinal expansion is prevented.  
     Stresses are calculated from the superposition of two contributions: (i) stress 
components arising from a displacement potential ψ(r, θ,  t) satisfying the 
thermoelastic stress-strain relation (1) with the given temperature distribution 
T(r,θ, t), but not the mechanical boundary conditions (free-boundary) and (ii) 
stress components due to pressure loads applied isothermally on the outer surface 
of the cylinder, to restore the free-boundary condition. 
     From the displacement potential, the two in-plane displacement components 
can be obtained, with the z-component identically zero. 
     The strain components are then obtained from the well-known kinematic 
relations in polar coordinates (Timoshenko and Goodier [10]); the stress 
components rσ ′ , θσ ′  and θτ r′  are subsequently calculated making use of eqn (1) 
with 0=′zε . 
     To restore the correct boundary conditions, we add on the rod surface a 
pressure distribution removing non-zero forces. To do so, we make use of the 
Michell’s expression of the Airy’s stress function φ(r,θ, t) applied to the ordinary 
plane-strain problem [10]. Once φ(r,θ, t) is known, stress components 

θθ τσσ rr ′′′′′′  and , ,  can be calculated in the usual way.  

Figure 4: Quasi static stresses at t=tsp as a function of radius and angle. 
 
Quasi static stresses at zero axial strain (Figure 4) are found by summing 
components from the two contributions. Axial stress is always negative having 
assumed that axial expansion is prevented. 
     All these stress components tend to disappear as the temperature distribution 
becomes uniform. 
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3.3 Dynamic analysis 

Numerical analyses (Bertarelli [7]) have shown that for cylindrical rods the 
contribution of radial waves over stresses is almost negligible. Therefore we will 
focus our dynamic analysis on the study of longitudinal and bending oscillations, 
neglecting the presence of radial waves. The same assumption also allows us to 
ignore the effect of transversal contraction due to Poisson’s ratio, hence we can 
replace eqn (6) for ve with ρE . For in-plane total stresses, the quasi-static 
values of rσ , θσ  and θτ r  will be retained. 
     Instead of trying to solve explicitly the equations of motion (2), we resort to 
the modal analysis, studying separately the response of the rod to two fictitious 
excitations linearly rising from zero in tsp, represented by the equivalent axial 
force Fz and the bending moment Mx applied at the extremities of the rod.  
     These two actions are necessary to ensure the equilibrium at the free 
extremities of the rod. The axial force and moment can be calculated as the 
opposite of the resultants of the axial quasi-static stress 0zσ .  
     The equivalent axial force is obtained via the following integral: 

 ∫ ∫−
−=

2/

2/ 0 0 )(2)(
π

π
θσ

R

zz rdrdttF    (11) 

It can be shown ([7], [8]) that for sptt ≥ , Fz remains constant and is proportional 
to the total deposited energy QT or, which is the same, to the final uniform 
temperature Tf: 

2RTE
Lc

QE
F f

v

T
z πα

ρ
α

==   for sptt ≥   (12) 

Hence the effect of Fz(t) is equivalent to a fictitious excitation linearly rising 
from zero up to a constant value in a time tsp (Figure 5). 
     With eccentricity measured along the vertical axis, the equivalent bending 
moment about horizontal axis Mx can be computed likewise. 
     In this case the resultant always depends upon time and becomes zero when 

∞→t , as one could expect, since temperature gradient disappears. Anyhow, it 
is interesting to note that Mx initially tends to decrease linearly. Therefore its 
dynamic effect can be approximately represented by an excitation rising from 
zero to a maximum in tsp and then linearly decreasing to zero in a convenient 
time (Figure 5). 
     To calculate the time-response we make use of the Modal Summation Method 
(Thomson [11]), which basically expands the deformation in terms of the normal 
modes φzi(z) or φfi(z) and of the generalized coordinates qzi(t) or qfi(t) of a simply 
supported uniform beam loaded at the extremities with Fz(t) or Mx(t) 
respectively. The equation of motion for each linearly independent mode is 
obtained by the application of the Lagrange equation. 
     As the generalized forces and the natural modes and frequencies for a simply 
supported beam are known, the generalized coordinates qzi(t) or qfi(t) can be 
calculated from the response of a single-DOF system to a generalized force with 
a time history g(t) or g’(t) respectively (Figure 5) and thus the lateral and 
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longitudinal displacements obtained. Hence, one can finally calculate the 
dynamic components of axial stress and superimpose them to the quasi static 
component to obtain the total axial stress zσ  (Figure 6). 
 

t 
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1 g(t) 
g’(t) 

 
Figure 5: Equivalent dynamic excitations acting on the rod extremities. 
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Figure 6: Quasi-static and dynamic components of axial stress at r=R, θ=270°. 

 
     In Figure 7 total axial stress on the outer surface of the rod at θ=270º is 
shown: the effect of the different components can be identified. The compressive 
quasi-static stress at zero strain is the only component initially present; then, the 
longitudinal waves start to build up assuming a trapezoidal shape with a 
maximum amplitude constant in time as shown in Figure 6.   
     The dynamic longitudinal stress induced by the positive fictitious excitation 
Fz(t) oscillates between 0 and 22 RFz π . This has a simple physical explanation: 

two equal longitudinal waves with amplitude 2REFzz πε =  depart from the 
rod ends travelling at the speed of sound ve, superimposing each other along the 
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rod with positive or negative sign according to their direction. Hence the period 
Tzl of each oscillation is given by svLT ezl µ842 ==  and the corresponding 
frequency fzl is 11.9 kHz. 
     The bending term due to the lateral oscillations induced by the equivalent 
excitation Mx(t) starts to appear much later but its effect becomes then 
predominant, leading to a bending stress as much as three times larger than the 
corresponding static stress. Its fundamental period Tzf is 2.1 ms and its frequency 
fzf is 467 Hz. 
     The total axial stress neglecting inertia effects is also plotted in Figure 7. It is 
obtained by adding to the zero-strain quasi-static axial stress, the static 
contributions due to Fz(t) and Mx(t). 
     The comparison clearly indicates that the dynamic effects are very important: 
the highest dynamic total stress is more than three times larger than the 
maximum quasi-static axial stress. The peak stress is found much after the initial 
impact, at about 1 ms. 
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Figure 7: Total axial stress as a function of time at r=R, θ=270º. 

4 Conclusions 

In this paper the mechanical response of a graphite isotropic cylindrical rod 
rapidly heated by an intense high-energy proton beam was studied. Quasi-static 
stresses and total axial stress, including dynamic effects, were determined 
analytically in the hypothesis of ideal elastic behaviour and plane-strain 
deformation. Results show that the thermal shock, on top of quasi static stresses, 
gives birth to two main dynamic phenomena: axial stress waves travelling at the 
speed of sound along the rod, with intensity proportional to the total deposited 
energy and transversal vibrations arising when the rod is hit off-axis by the 
beam. These vibrations induce bending stresses that are much higher than the 
quasi-static stresses generated by the non uniform temperature distribution; in 
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addition, the peak bending stress occurs much after the initial impact has taken 
place. Hence, each time a thermal shock occurs on a slender structure, the 
induced dynamic phenomena cannot be neglected and must be carefully analysed 
for a relatively extended time as compared to the duration of the impact. 
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