E@; Transactions on the Built Environment vol 15, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

The mechanics of masonry stairs

J. Heyman
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Abstract

A simple statical analysis is made of both straight and curving ("geometrical”)
flights of stairs. The basic structural action is twist of individual treads, leading
to shear stresses in the masonry; such stresses are more harmful than direct
compression.

Introduction

Figure 1 gives a plan view of a simple masonry stair built against two walls of
the enclosing chamber. Each of the treads (of which 4 are shown in the sketch
of Fig. 2) consists of a slab of masonry ¢ x b x d (Fig. 3); one end of each
tread is built in to the wall, while the other end is free. Thus the bottom tread
in Fig. 2 rests on the ground; the front edge of the next tread rests on the rear
edge of the bottom tread, and one end is supported also by the wall; and so on
for successive treads. In practice, the treads may be notched together as
sketched in Fig. 4(a); a common form of construction involves the cutting away
of the soffit of each tread, Fig. 4(b), to give a smooth undersurface for the stair
and also to lighten the overall weight. Such notching is of course essential to
avoid the infinite stresses which would be generated in theory by a line contact;
they also provide a very necessary margin of safety against defects in the stair.
The basic mechanics of the stair as a whole may be examined, however, by
reference to the idealised representation of Figs. 2 and 3.

Live Load

The fundamental problem is to determine how the forces generated by dead and
live load are distributed through the stair system to the walls and to the ground.
A start may be made by considering the effect of a single load P placed at the
centre of the last (top) tread in Fig. 2 (assuming for the moment that the stair
stops at this point). It is clear that equilibrium of the top tread could be
established by the forces shown in Fig. 5(a); the right hand support force of V2P
is provided by the wall into which the tread is built, while the left hand force
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of 2P is provided by support given by the tread below. It may be imagined
that in fact these idealised concentrated support forces will be replaced by some
distributed system as sketched in Fig. 5(b). Whatever the distribution, the total
upward support must have the value P, and other conditions of moment
equilibrium must also be satisfied.

The actual distribution of the support forces is essentially unknowable. If
the exact geometry of each tread were known, together with its elastic
propetties; if the stair had been perfectly constructed, or alternatively surveyed
to find its actual state; if the elasticity and other properties of the support walls
had been ascertained, if, in short, a complete knowledge of the stair were
available, then, in theory, a laborious calculation would yield the values of the
forces in the stair. Even so, such a calculation would be valid for only a
limited period; small accidental settlements, for example, can lead to marked
changes in internal force systems. All this is well known to structural analysts
(although it is sometimes hidden from view behind computer packages), and
leads to the adoption of simple equilibrium systems such as that shown in Fig.
5(a). Such systems, involving point forces, give a fundamental insight into
overall structural behaviour; it must always be remembered that the point forces
will be replaced in practice by some distributed system, as for example that of
Fig. 5(b).

Equilibrium of the top tread can be achieved, then, by the forces of Fig.
5(a). The rest of the stair will then experience a loading force of 2P as shown
in Fig. 6. To establish a plausible equilibrium system for the second tread, it
is helpful to consider a very small movement of that tread. If, for example, the
supported (shaded) end of the tread were slightly loose in the wall, then it may
be imagined that tread 2 would rotate slightly about the support line on tread
3, so that edge AB would deflect slightly downwards under the action of the
load 2P. Rotation would be limited by the fact that the lower corer B’ would
come into contact with support from the wall, so that a vertical propping force
would be generated at B'.

Such ideas of deformation need not be examined analytically, but they lead
at once to the (essentially correct) notion that each tread could be maintained
in equilibrium by forces acting at the four corners A, B, C and D. Such a
system is statically determinate; the forces acting at comers B, C and D to
support the load 2P at A can be found at once, and they are shown in Fig. 7.
It will be seen that up and down forces of V2P are engendered at the encastred
end of tread 2; correspondingly, the free end of tread 2 is supported by a force
of V2P from tread 3. The tread is attempting to twist in the wall, and is
restrained by the torque corresponding to the up and down forces of “2P. (The
consequences of this torque will be examined later.) It should be emphasized
that the treads are not actually loose in the wall, and that stresses are low so
that the stair as a whole is virtually rigid; nevertheless, the tendency to twist is
there, and the torques will actually arise.

It was seen that tread 3 provides a support to tread 2; tread 3 is acted upon
in turn at its free edge by a force of V2P. The equilibrium analysis of tread 3
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is identical with that of tread 2, and so for tread 4; the load of P placed on the
top tread is carried, according to this simple analysis, by a load of 2P
transmitted from tread to tread at their free edges, with each tread being
subjected to a torque as it attempts to twist in the wall. It may be imagined
that the forces will die away down the stair; each tread has been thought of as
being simply supported in the wall, but the actual encastrement will allow the
development of some bending action, so that the treads can act to some extent
as cantilevers. Such cantilever action will in fact be weak, and the simple
analysis shows that bending is not needed for the stability of the stair as a
whole.

It may be noted that each tread of the stair in Fig. 7 is subjected to a pure
torque of value

T = %Pb @™

where the width of the tread is b (Fig. 3).
Live Load at Edge of Stair

If the live load P is placed at the free edge rather than the centre of a tread, the
force transmitted from tread to tread has value P, rather than the 2P shown in
Fig. 7. Thus the resulting torque on each tread would have double the value
of equation (1).

Dead Load

The forces generated by the self-weight of the stair may be found immediately
from the above analysis. The stair is sketched in Fig. 8, where the weight of
each tread is W (shown for convenience as a point load). The forces on tread
2 are merely the forces of treads 1 and 2 in Fig. 7 superimposed, and so on
down the stair to the general tread n. Analysis of this general tread, Fig. 9,
shows that the structural action at the centre of the tread can be represented by
a torque T and a bending moment M, where

2 )

Thus the torque on a tread increases down the stair, while each tread is
subjected to the same (small) bending moment M (as if it were a simply
supported beam).
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The Quarter Landing

Figure 1 shows a quarter landing. Figure 10 sketches this quarter landing
together with the treads just above and below; a live load P is being transmitted
down the upper flight. The outermost corner of the quarter landing is subjected
to a point load Y2P; effectively, the quarter landing has to support only its own
weight, and otherwise acts as a “newel” to transmit loads from the upper flight
direct to the lower.

The Geometrical Stair

Figure 11 shows the plan view of a stair built within a circular chamber; an
idealised tread is shown in Fig. 12. The mechanics of such stairs follows
directly from the analysis given above. For example, Fig. 13 shows the top
tread subjected to a live load P (cf. Fig. 7); the load of '2P is transmitted from
tread to tread down the free edges, as before. Because of the taper of the tread,
however, the torque exerted by the wall is reduced by a factor B, where P is
defined in the plan of Fig. 11.

The value of V2P depends, of course, on the exact location of the live load.
When the case of dead load is considered (cf. Fig. 8), the weights W of each
tread will act through the centre of gravity of the tread rather than the
geometrical centre, so that the value of “2W transmitted by each successive
tread will be in reality slightly less. However, the difference is small, and the
expressions of equations (2) will give good indications of the magnitudes of the
structural forces (with the value of the torque T reduced by the factor B as
appropriate).

It may be noted from Fig. 11 that for f = O the stair becomes a turret stair
with a central newel; from Fig. 13 the loads are transmitted down the newel
without torque on the treads.

Some Stress Calculations

A bending moment M acting on a structural member of cross-sectional
dimensions b x d (Fig. 3) will produce a maximum bending stress

6M

—_ . 3
bd*

Timoshenko (Theory of Elasticity, McGraw-Hill, 1934) discusses the torsion of
a rectangular section by a torque 7, and gives the expression for maximum
shearing stress

@

T =

17
k bd*



E@; Transactions on the Built Environment vol 15, © 1995 WIT Press, www.witpress.com, ISSN 1743-3509

Dynamics, Repairs & Restoration 263

The numerical constant k, is a function of the ratio b/d, and is tabulated by
Timoshenko.

For the numerical calculations, the dimensions { x b x d of each tread will
be taken as 1000 x 300 x 150. The live load P will be taken as 800 N
(corresponding to a man of mass 80 kg); this same figure of 800 N corresponds
roughly to the weight of a single tread, and will be taken as the value of W.

Thus from equations (2) the value of bending moment is determined as
100 Nm, and equation (3) then gives the bending stress as 0.09 N/mm?, which
is a negligible value.

From the first of equations (2), the value of the torque T is essentially
Y2Wb per tread (for a flight of n treads, the torque on the lowest tread is
(n - V2) times this value). For the basic torque “2Wb, equation (4) gives a
stress

T o=

1 W
2% )

and for b/d = 2, Timoshenko gives k, = 0.246. Thus for W = 800 N and
d = 150 mm, equation (5) gives the shearing stress per tread to be 0.0723
N/mm? Thus the shearing stress at the bottom of a flight of 20 steps will be
19.5 times this value, i.e. 1.4 N/mm?

A large geometrical stair of 100 steps, and having = 2/3 say, would
have a corresponding maximum shearing stress of 4.8 N/mm?® A shearing
stress on one plane of a material will engender tensile tresses on another plane,
and tensile stresses in masonry of the order of 5 N/mm? are high.

Conclusion

It is likely that, in practice, a stair will transmit forces both vertically between
treads, as in Fig. 7, and also horizontally if the steps are notched together.
However, it is difficult to imagine that individual treads will be free of torque;
hence shear stresses, and corresponding tensile stresses, will be present in the
stone. Modest flights will, however, not be subject to excessively high stress
levels, either from dead or from live loads. Individual treads in straight flights
and in geometrical stairs behave in much the same way. There are no
particular problems arising from quarter (or half) landings used in straight
flights.

There is the possibility for very long flights of stairs that the total dead
weight will lead to high torques on the lowest treads. If, in addition, every
other step supports a person at the centre of the stair, then dead-load stresses
will be increased by perhaps 50 per cent; if the people on the stair all move to
the free edge, the dead-load stresses may well be doubled. These stresses are
essentially tensile, and can lead to fracture of the stone treads at much lower
stress levels than the corresponding crushing strengths of the material.
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