Recovery and maintenance of the building complex used for tobacco manufacture in Cava de' Tirreni

S. De Medici¹, K. Fabbricatti², S. Oppido², M. R. Pinto² & A. Bianchi³ ¹Department of "Analisi, Rappresentazione e Progetto nelle Aree del Mediterraneo" (ARP), Faculty of Architecture of Syracuse, University of Catania, Italy ²Department of "Configurazione e Attuazione dell'Architettura", Faculty of Architecture, University of Naples "Federico II" ³C.I.R.AM- "Centro Interdipartimentale Ricerca Ambiente", University of Naples "Federico II"

Abstract

The case of the tobacco manufacturing site in Cava de' Tirreni (Sa) will be analysed to describe the complexity of intervention choices for buildings in which there has to be a change in the use destination; its new destination will be the settling of a pole of the Faculty of Architecture, University of Naples "Federico II" and of activities connected to a sustainable tourism promotion. The building was built as a patrician house (1524), it then changed different use destinations, until 1912 when it was transformed to an industrial site, specifically in tobacco manufacturing which today still represents the building's prevailing feature. The actual configuration derives from relevant interventions in the 1900s for the manufacturing activities' need and is distinguished by the introduction of new techniques and new materials; because of all of these features the site is an example of industrial archaeology. The definition of reuse interventions requires the preservation of relationships within the pre-industrial building as it was shaped after the changes in the 1900s, to guarantee the preservation of evidence of different ages' material culture and maintenance related to the new use. The proposed contribution defines guidelines for the planning of the interventions that have to be carried out, when processing the reuse project for a building, in which the need to govern and at the same time the choice of materials and traditional building techniques is connected to the durability prevision and the behaviour of a building system subject to new use.

Keywords: sustainable reuse, maintenance, technological features, industrial architecture, pre-industrial buildings.

1 Introduction

From the Industrial Revolution, the introduction of new technologies in the building segment, brought, throughout XXth Century, the use of building materials and elements with different features from the "traditional" architecture.

These technologies, other than having determined the total obsolescence of pre-industrial building systems - for economical and safety reasons and for their compositive potentiality - were largely used for transformation of the existent building heritage. In these cases, there are problems due to the limited knowledge of durability performances and to the behavior of new building systems and materials, together with difficulties in the integration between new technical elements and pre-existing building structures. The buildings are transformed with different technologies connected to different ages. In fact, the different technologies overlap and cross the pre-existing in a new complex system that becomes a strategic element for choices connected to the project.

Buildings that had already gone through significant transformations in the past present complex problems when they have to deal with interventions for their obsolescence conditions, in fact there is a double requirement: preserve a single building's elements and at the same time, preserve whole parts that form, today, a unitary system [1].

The more frequent mistake is to ascribe different values to single parts, not considering the actual building configuration as a unitary, balanced element. In detail, interventions realized in the XXth century, are recognizable for the use of new materials different from the traditional ones, or for the new use of traditional techniques and materials. These interventions have an implicit "fragility" due to the not yet experimented materials' and techniques' perishability and to the non-acknowledgement of their value when not realized by famous planners. This is the condition of industrial architecture, often the object of interventions done because of the impossibility of preserving the use destination for the fast development of handcrafts processes and for the radical change of production requirements, or for the growth of the economical value of areas that were considered in the outskirts and that, today, for urban expansion are considered center city.

Re-use interventions for industrial buildings of XXth Century, have to search for a balance between preservation and transformation with the aim of preserving the building's identity. In the case of traditional buildings that were modified in 1900 for requirements connected to the factory output, it's necessary to define intervention choices on a base of analysis of a new balance condition the building reached. This balance condition requires the due consideration of the role of materials and technological elements of different building techniques. Interventions that erase the 1900 traces, would impoverish the building's identity changing its testimonial value in the succeeding of different use destinations linked to the local communities' events.

The building choices and the realization modalities of the 1900 interventions have often produced a fast decay process that was sped up by the inexpensive materials featured by industrial buildings of the past, and by the difficult

integration of traditional building systems and elements realized with new materials and new technologies.

The reuse project, in buildings that present a combination of technologies, has to adapt the pre-existing to the new function, guaranteeing preservation in time of all its elements for the presence, together, of traditional and post-industrial technologies.

2 Tobacco manufacture in Cava de' Tirreni

The study case gives evidence of the events of Cava de' Tirreni: the building, born as a patrician house in 1524, became a monastery in 1600 and finally, an industrial site at the end of 1800.

In this period "Borboni" establish Legal Monopoly, choosing Cava de' Tirreni as the only site for tobacco cultivation and, in 1912, the building was used for the manufacture activity connected to this cultivation. After this change of its use destination, in 1900, the building undergoes consistent and significant transformations so that it appears today as an example of industrial architecture, symbol of local economy and of the productive past of the city.

Recently Cava de' Tirreni assumed a role of cultural and scientific pole, holding teaching structures and forecasting the building's reuse as a University. Besides, in the last years, the city became the center for a different kind of tourism, an ecological kind of tourism in contrast with the already present mass tourism of the Sorrento coast. The building, that is today unused, could have a double function: on one hand the one of cultural pole, hosting the University of Naples "Federico II", degree in Building Science and Building and Urban Management and Maintenance, already in Cava in a temporary place; on the other hand the one of tourism and land promotion pole.

The integration among various activities is necessary to guarantee the intervention's sustainability and to promote a strategy orientated, on one hand, towards the allocation of the functions that guarantee the financial bearableness of the project (driving functions) and on the other hand, towards those functions that satisfy the local needs, that alone would not be able to support itself.

The strategic model that represents this development idea is made up of a joining nucleus, that co-ordinates and fuels the two complementary functional sectors: driving functions, economic profile; driven functions, to consent and to satisfy local needs.

The considerable physical consistency of the building in examination, the complex morphological articulation of the building, the strategic roles covered within the urban contest, caused the necessary examination of the functional systems.

The acknowledgement of the proposal pointed out the necessity to allocate, new activities in the economic and vocational training sectors. Beginning from this demand, two distinctive functional systems were hypothesized.

The main idea is to create a pole, that constitutes a central engine that fuels and transforms the induced deriving from the grouping of the functions. The

hypothesis has as driving function all the activities connected to a sustainable tourism promotion constituted by: training and refresher courses in the ecotourism and environmental areas, management and information point on the activities of the nearby WWF Park, general tourist info-point (hotels in Cava, public transportation, events schedule, museum information, etc.), meeting room for connected activities, promoting handcrafts.

On the other hand, as driven functions can be considered all the activities connected to the University programs and courses. Due to the nature of the University programs, the two functions can be perfectly connected creating a synergy among the settled activities. In fact, the degree in Urban and Building Maintenance and Management includes, in its programs and courses, disciplines aimed to the land sustainable development and ecology.

Despite the preservation of the old court-building plan, the space distribution organization and the morphological features were strongly marked by the industrial destination so that almost only the traces connected to this function are observable today. The prospectus architectonic features are the result of the transformations the building underwent after the creation, in 1900 of the square and the public gardens, that required the re-planning of the urban scenery.

The principal prospectus is featured by an ashlar basement with a big relief, a facing with clews fixed at one end only, a coping with a shelf and a liberty style, steel and glass main door. The plane coverings are interchanged with flap coverings with tile mantle.

The basement still holds yellow tufa stone wall structures and space configuration is determined by modular areas with barrel vaults that reproduce a structural connection, realized for considerable loads for the manufacture activities. The risen structure is composed by full masonry in yellow tufa stones in alternation with reinforced concrete pillars built in 1900.

The slab floors as well, are featured by a variety of techniques and materials for all that happened to the building and its history. The big loads due to the storage of tobacco bundles and the working machineries determined the need to replace the ancient wooden structures. So, for these racking loads needs, slab floors with diagonally positioned brick vaults where built, slab floors with metal beams and drilled bricks, brick-cement slab floors with prepared on site or precast secondary beams. After the 1980 earthquake, IPE beams were used for the consolidation of rooms with small vaults slab floors with light sometimes over 10,0 m.

The coverings are featured by Palladian style portal frames in chestnut wood and English style, iron portal frames, in both cases with a "Piemontese" warping. In the garret, precast lattice beams, set in a reinforced concrete curb realize an adequate bracing.

The new functions attribute to the building extremely different requirements from the ones determined by the manufacture activity. In fact, the racking loads are reduced, but new requirements are introduced for safety and emergency for the new crowding conditions, for the exploitation and well-being required by the new activities to settle.

3 The programming of rehabilitation interventions and maintenance of the technological system

Preservation of 1900 structures in pre-industrial buildings for the settling of new use destinations requires a new type of intervention planning on the built environment. To defend evidences of the past use variations, that are a bond for the built environment, it's necessary to realize the way transformed building complexes work, this can be done analyzing the conditions that determine the balance features. During the planning phase, to create a new type of balance it's necessary a framework acknowledgement to assure identity preservation and the satisfaction of use requirements for the new functions to be settled [2].

A "preferable" functional layout hypothesis of the new University site was defined (Fig. 1) evaluating compatibility of different distributive solutions as an option to the new functions.

Figure 1: Hypothesis of the "preferable" layout for the Cultural and Touristic Pole.

Starting from this hypothesis, the performance level compliance was studied linking each area to the different requirements of the activities that there will be exploited. The control results are the base for the definition of the project's choices: in case of respondance between requirements and minimum levels required, the project's only aim, will be to plan maintenance activities in time to guarantee efficiency conditions in each environmental unit; instead, for units that require performance adequacy, the plan will fix interventions solutions based on the respect of the building's features (Fig. 2). So, the first problem is to define new ways to portray the built environment, to highlight the complex inner relation system, studying the morphological-building aspects in the actual obsolescence conditions. The informative system has to study the features that determine the building's identity, defining transformation bonds and highlighting connections between traditional building elements and the 1900 structures, through an evaluation of the effects of the interactions of these components [3].

Figure 2: Design method for reuse and maintenance of the Tobacco manufacture.

The aim of the following tables is to build an informative system able to survey data featured by a progressive detail level. Beginning with a performance analysis of the environmental unit (Table 1), the proposed method estimates the efficiency of each technical element (Tables 2-3) and singles out the perceptivecultural features (P: transparency; rhythm of the frames design; color and finishing of the frames), morphological-dimensional features (M-D: glazed/opaque surface rate; morphology with rectangular modules; section shape and dimension of the frames) and matter-building features (M-B: connection to the wall; frame and pane material; connection systems of the frames), considering them as transformation bonds. On the base of this evaluation, in case of inadequacy of performance levels, planning guidelines will be proposed; in case of adequacy of performance levels there will be only maintenance activities. The analysis of the requirement class "Management" is necessary when programming maintenance for the preservation of performance levels gained after the interventions [4].

4 Conclusion

The variety of factors that create the image of urban settlements and of their land context is composed, on one hand, by the built environment's features with the changes occurred in its life cycle, on the other hand, by the relationship between built environment and natural environment and the impacts.

Table 1:Analysis of the horizontal ways (corridors and halls).

		LOCALIZATION: FIRST FLOOR	
Western façade and	Corridor on the f		
	FUNCTION		DIMENSION
1) Horizontal connect	etion		Width: 3,30 m
2) Emergency ways			Length: 30,8 m Height: 5,00 m
ELEMENTS OF THE CORRIDOR	DIMENSION	MATERIALS	Construction Techniques
1) Perimetrical wall (window-sill)	Thickness: 40 cm	Hollow bricks, ordinary mortar	Double-head hollow bricks masonry, with ordinary mortar and reinforced concrete pillars
2) Windows	Height: 380 cm Length: 400 cm	Glass, mild steel	Window with frame connected with cramps to the wall, steel frame connected with riveted joints, blown rolled glass pane connected with stucco
3) Interior wall	Thickness: 100 cm	Bricks of yellow tufa, heap of stones, ordinary mortar	Dry masonry with faces of tufa bricks and ordinary mortar and packing of heap of stones
4) Doors	Width: 150 cm Height: 240 cm	Chestnut-wood	Window with frame connected with cramps to the wall, steel frame connected with screws, sash connected with H and L hinge to the frame
5) Partition	Width: 3,30 m Height: 5 m	Glass, mild steel	Window with frame connected with cramps to the wall, steel frame connected with screws, sash connected with H and L hinge to the frame, blown rolled glass pane connected with stucco
6) Floor	Thickness: 20 cm	Cement, steel, hollow bricks, ordinary mortar	Joisted mixed floor with hollow tiles supported by IPE steel girders, concrete floor slab and grès flooring
7) Ceiling	Thickness: 35 cm	Concrete, steel, hollow bricks, ordinary mortar, bituminous gaiter, panels of flexible foamed	Joisted mixed floor with hollow tiles supported by IPE steel girders, concrete floor slab, steam barrier, insulation, inclined and finishing slab and gaiter

TECHNICAL ELEMENT: WINDOW			FUNCTION		ROOM: CORRIDOR	
			1) Lighting			
		2) Natural ventilation				
COMPONENTS DIMENSION MA		MAT	ERIALS CONSTR		UCTION TECHNIQUES	
Frame	9,42x 40 mm	Mild s	steel	Welding of the steel sections and connection between frame and wall with steel cramps		
Sash	40x20x5 mm (angle iron)	Mild s	steel	by riveted joints	een sash and frame the frame	
Glass pane	75x55x0,5 cm	Glass		Connection betwee	een glass and sash with stucco	
CLASSES OF NEEDS	CLASS REQUIR		s	REQUIREMENTS		
a) Usability	Adaptability of the mechanical co			a1 - Easiness of use and maneuver a2 - Shape-retaining		
b) Safety	Steadiness		b1 - Mechanical steadiness with static loads b2 - Mechanical steadiness with dynamic loads			
	Fire-safety		b3 - No toxic smoke emission b4 - Restriction of flame propagation			
	The-safety			b5 - Fire resistance b6 - Disposal of toxic gas		
	Users' safety			b7 - Control of roughness b8 - Safety of use		
			b9 - Control of intrusions c1 - Control of sun radiation			
	Thermal and hygrometric requirements			c2 - Thermal-proofing c3 - Water-proofing		
c) Comfort				c4 - Air-proofing c5 - Control of ventilation		
	Visual requirements			c6 - Control of the light flow		
	Acoustic requirements			c7 - Sound-proofing		
d) Aspect	Aspect of the rooms		d1 - Inhygroscopicity d2 - Control of the surface condensing			
	Aspect of the technical elements			d3 - Control of the finishing materials d4 - Lightness / heaviness		
e) Management	Maintainability			e1 - Easiness of intervention e2 - Replaceability e3 - Repairability e4 - Cleanability		
	Operation			e5 - Adjustability e6 - Reliability		

Table 2:Analysis of the technical element: window.

Req.	Characters	Evaluation		Guide-lines for the design		
a1	MC-MD	The window can not be open	-	Integration with an opening system		
a2	MD	The materials and the construction				
a2	MID	techniques guarantee the shape-retaining				
b1	MC	The window stands only to its own weight	\checkmark			
b2	MC	The window stands to the wind		Maintenance planning of the recovered		
b3	MC	The materials are not toxic		window		
b4	мс	The materials are not supporters of				
	MC	combustion	ľ			
b5	МС	The components do not lose their steadiness burning	\checkmark			
b6	P-MC-MD	The window can not be open	-	Integration with an opening system		
b7	MC-MD	The finishing is smooth	\checkmark	Maintenance planning of the recovered window		
		The window can not be open and the		WIIIdOW		
b8	MC-MD	pane is fragile		Replacement of the panes with safety		
b9	MC-MD	The pane is not resistant to impacts	-	toughened glass panes		
				Integration with a dim system or		
c1	P-MC-MD	The window can not be dimmed	-	replacement of the panes with protective cased glass panes		
	MCMD	The window is not adequately thermal-		Replacement of the panes with thermal-		
c2	MC-MD	proof	-	proof cased glass panes		
c3	MC-MD	The connection with the wall and the joints of the panes allows the water		Integration with rubber packing in the connection with the wall and design of		
65	MC-MD	intrusion	-	a glass stop system		
				Integration with rubber packing in the		
c4	MC-MD	The window allows the air intrusion	-	connection between the frames and		
				with the wall		
<u>c5</u>	P-MC-MD	The window can not be open	-	Integration with an opening system		
<u>c6</u>	P-MC-MD	The window can not be dimmed	-	Integration with a dim system		
		The panes and the joints do not guarantee		Integration with rubber packing in the connection with the wall and		
c7	P-MC-MD	the sound-proofing		replacement of the panes with sound-		
				proofing cased glass panes		
d1	P-MC-MD	The aspect, the shape, the dimension and the performances of the window do not		Maintenance planning of the recovered		
ui	1 110-110	change due to the water absorption	ľ	window		
d2	MC-MD	The joints between frames and panes		Control of the insulation characteristics		
u2	MC-MD	allows the surface condensing	_	of the recovered window		
d3	P-MC	The frames finishing requires frequent maintenance	\checkmark			
		The big glazed surface and the small		Maintenance planning of the recovered window		
d4	P-MC-MD	thickness of the frames make the window	\checkmark	window		
		light The window location does not allow the	Н			
e1	MC-MD	outdoor maintenance intervention without		Integration with an opening or		
	MC-MD	scaffoldings		removable frame system		
e2	MC-MD	The glass panes and the frames can be		Maintenance planning of the recovered		
		replaced	Η	window Replacement of the panes with cased		
e3	Р	The panes can not be repaired	-	glass panes		
e4	MC-MD	The external surface of the window can not be clean without scaffoldings		Integration with an opening or removable frame system		
	DIAGON	The window does not allow the	H	Integration with an adjustable opening		
e5	P-MC-MD	regulation of air flow	-	system		
e6	МС	The window conserves its quality performance in the common use	\checkmark	Maintenance planning of the recovered window		
The	The window needs an intervention (-); the window does not need an intervention ($$).					
1 ne	The window needs an intervention (-), the window does not need all intervention (v).					

 Table 3:
 Performance evaluation and guidelines for the reuse design.

The widespread practice that erases 1900 interventions on pre-industrial buildings or saves just single parts of the interventions as traces, does not guarantee building's preservation, when the identity is traced by the technologies layering that constitute the buildings' evolution [5]. So, planning criteria have to be defined to guide the intervention on the whole built heritage and instruments to support planning solutions for single cases interventions.

The 1900 interventions, in particular the ones for industrial architecture, can be recognized mostly through the adopted technological solutions that are the main feature, even if distinguished by a building "fragility" for a non sufficient know-how of materials and techniques. In pre-industrial buildings with strong XXth Century contributions, these elements have to be considered as a resource for they are evidence of the technological evolution and of the increase of the built environment's performances.

The project for the enhancement and re-use of these buildings will have to be supported by an attentive study of the built environment, to single out transformation bonds to respect its identity. In these cases, the use of compatibility check methodologies between built environment and new functions, guarantees that planning solutions will be able to keep the system balance that the building gained in time. So, the intervention's sustainability can be obtained with the use of built resources with the recovery of the building and, at the same time, with the settlement of activities aimed to the salvaging of the environment and to the promotion of an ecological-compatible kind of tourism. Sustainability can be intended in two ways: economics sustainability for the settling of driving functions in the building and, ideological-cultural sustainability for the use and the salvaging of natural and built resources already existing in the area.

References

- [1] Pinto M.R., Il riuso edilizio: procedure, metodi ed esperienze, UTET, Torino, 2004.
- [2] Caterina G, Il recupero degli infissi, UTET, Torino, 1995.
- [3] Fiore V., De Medici S., Il sistema di regole, in: FIORE V., La manutenzione dell'immagine urbana, Maggioli, Rimini, 1998.
- [4] Manfron V., Siviero E. (eds.), Manutenzione delle costruzioni. Progetto e gestione, UTET, Torino, 1998.
- [5] Galliani G.V., Tecnologia del costruito, Alinea, Firenze, 2002.

