@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Generation of software tests from
specifications

I. Spence & C. Meudec

Department of Computer Science, The Queen’s
University of Belfast, University Road, Belfast,
BT7 1NN, Northern Ireland, UK

ABSTRACT

Thorough testing is widely acknowledged to be a very expensive part of the
software development process. The conventional method of constructing and
executing tests for software systems is contrasted with automatic techniques
which generate and execute tests derived from the software under test and/or
from its formal specification. We present a review of techniques which are
currently being used or developed for generating tests, and discuss the
approach which we are using.

INTRODUCTION

In spite of the greatest care being taken during the specification, design and
development of any product it is rarely disputed that confidence in the end
result can and should be increased by trial use prior to general release and
widespread use. For software systems this trial use, or testing, can serve two
purposes, depending on who carries it out -

* A software engineer who should if possible not have been involved with
the development of the software might carry out testing to ensure that the
specification has been implemented correctly, that is, that the software does
what the developers thought it would do.

* A user might carry out testing to ensure that the software does what the
users thought it would do, that is, test the specification as well as the
software.

In this paper we only consider the former kind of testing and so we
assume that the expected behaviour of the software is precisely written down.

Testing involves generating artificial data, executing the program with
this data, and observing the results. The data for a single execution, together
with some means of determining whether the corresponding results are
acceptable, is called a fest case.

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

518 Software Quality Management

The traditional approach involves manual construction and execution of
tests and inspection of results. Someone carefully reads the specification
and/or the implementation of a module or program, and invents tests which
exercise the program as thoroughly as possible. The construction and
execution of these tests takes time and is therefore expensive, both in terms of
human resources and in terms of costs introduced by delayed program release.
It is commonly understood, for example, that approximately 30% of the costs
incurred during software development can be related directly to testing, so
there is considerable pressure to use test sets which are as small and as
efficient as possible. In many respects manual testing is a very tedious
process, involving prolonged attention to fine detail and repetition of similar
tasks, frequently without significant intellectual challenge. The tests generated
in this way are very subjective. Many researchers have therefore investigated
the possibility of automating different parts of testing.

Automatic execution of tests

Depending on the exact nature of the interfaces to the program, automation of
the execution of tests can frequently be straightforward. If all input to the
program is from files on disc then test data can be prepared in advance and
supplied to the program automatically. This technique can be used to ensure
that the same tests can be carried out on a new version of the software to
ensure that any modifications have not destroyed old capabilities (useful for
regression testing).

If a program relies on input from a user via a keyboard and mouse, as is
increasingly common, the preparation and use of data files is more difficult.
The technique used is to introduce a layer of testing software between the user
and the program under test. The user carries out the tests once, and the test
system records keystrokes and mouse activity. These can then be reproduced
on a subsequent occasion to simulate the activity of a real user, reducing the
time taken for subsequent test runs and ensuring that the tests are reproduced
accurately.

Automatic interpretation of resuits
Having supplied the data to the program under test it is necessary to decide

whether the results produced are acceptable. To achieve this the corresponding
output must be available to the test system and there must be some way for the
test system to determine whether the output is acceptable. As before, the
degree of difficulty is affected by the nature of the interface. If the only output
is to disc files, is may be a straightforward matter to decide whether this is
acceptable, for example by comparing it against a previously determined
correct version.

For graphical output to a high-resolution screen however there is no
easy way for a test system to ensure that the output is acceptable. For
example, a shift in the position of a screen item by one pixel may well not
have any visual significance, but would be rejected by the simplistic approach
of recording each pixel written to the screen and comparing against some
agreed version. This is an instance of the more general situation where the
program specification is deliberately non-deterministic, that is where there is
more than one acceptable solution. With the rapid proliferation of programs

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 519

which are event-driven and which have graphical user interfaces, this is a
growing problem.

In spite of the problems mentioned above, considerable use has been
made of these techniques for the automatic recording, playback and
interpretation of results. Significant time savings can be achieved and there is
increased confidence that tests can be repeated exactly. In environments
where software development is audited this is regarded as being of increasing
importance.

Automatic generation of test cases

Automating the generation of test cases, together with verification of the
corresponding results, has undoubtedly proved to be the most difficult of the
three tasks. It requires that the test generation system be able to analyse the
program specification and, possibly, the program implementation, and
exercise as much of both as possible.

Tests can be generated on the basis of the specification alone, which
leads to black-box testing - the program under test is considered to be opaque
and it is not possible to know anything about it except by supplying it with
input and examining the output. This has the advantages that the tests can be
generated before the program has been implemented, and that the same tests
can be applied to different implementations. Making use of the specification
also means that it is possible to determine whether the output produced by the
program is acceptable.

It is also possible to construct tests which are based purely on the
implementation, which is called white-box testing. For example an attempt can
be made to ensure that every statement is executed at least once when a set of
test cases is used. The acceptability of the results is determined either by
resorting to the specification in addition to the implementation as a basis for
test generation or by comparing the results with those produced by previous
versions of the program which users have regarded as acceptable. This
technique is complementary to black-box testing.

It should be noted that whereas a human tester can understand and
make a certain amount of use of an imprecise document such as a specification
written in natural language, an automated test generation system requires its
inputs to be formal documents such as syntactically and semantically correct
programs or formal specifications. We will now consider a number of
strategies which have been used for the generation of tests.

RANDOM TESTING

This strategy relies solely on the domain of the input, that is the overall
structure and the types of individual components of the data supplied to the
program. This can be discovered from the specification, and there is no need
to refer to the implementation, so this is a black-box strategy. Within the input
domain, test cases are generated by selecting values at random, which can be
done automatically. A possible refinement is to use a probable operational
input distribution to generate the test set. It is debatable whether using values
which are more likely to occur in practice increases the chances of finding

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
520 Software Quality Management

errors in the system under test, but this does help to increase the subjective
level of confidence.

Random testing is intuitively the poorest strategy for selecting test cases.
Early books on software testing such as Myers [1] do not discuss it except to
dismiss it. A more recent experimental study by Hamlet [2] however, tends to
contradict this intuitive view and suggest that there is value in random testing.
It follows a report from Duran [3]. A later review by Weyuker [4] of this
experimental work used a more analytical approach and is more in tune with
the intuitive feeling that random testing is of little value.

Overall there are few examples in the literature of automatic test
generation using this method, and there does not appear to be any general
purpose system. The examples which are given are usually directed towards a
specific application area such as compiler testing, where for example the
Bazzichi and Spadafora system [5] generates random example programs to
test Pascal compilers.

Random test case generators are easier to construct than those which use
the other strategies listed below. This simplicity is attractive, but there must be
doubts about how effectively a randomly chosen set of test cases will uncover
errors, as from a theoretical point of view its effectiveness is still an open
question (Hamlet [2], Weyuker [4], Beizer [6]), and so it might be expected
that a large number of test cases will be used. This increases the importance of
being able to execute the tests and evaluate the results automatically - i.e. have
an oracle available to verify the results of the test. In the absence of any real
consensus about the efficiency of random testing it appears that, at least in
particular areas where other strategies are too complex to implement, random
testing is an acceptable strategy. Specifically, it can be used to help increase
confidence in the system under test as suggested by Hamlet [2].

STRUCTURAL TESTING

Using this strategy, test cases are generated by analysing the source code of
the system under test. The tests are generated in such a way that different
execution paths through the code are followed. For example, for each
conditional statement within the code there should be at least one test case
which forces each branch of the statement to be followed. For each iterative
statement there should be test cases to ensure that, for example, the body of
the statement is executed zero, one or many times. We only consider here
pathwise generators for programs written in an imperative, sequential
language as these are the most common.

There are many introductions to test generation from path coverage (e.g.
Myers [1], Deutsch [7], Kopetz [8], Hetzel [9]) which differ only in the way
in which paths are determined and in the criteria used to generate tests. Ideally
the test cases should ensure that all possible paths for the system under test are
exercised. However, in practice there may be paths through the code which
cannot be followed by any test case (so-called infeasible paths), and even a
restriction to those paths which are feasible would typically result in an
impossibly large test set. Therefore, rather than insisting on total coverage,

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 521

weaker criteria such as execution of all statements, all branches, or all linear
code sequences and jumps in the code under tests are adopted.

There is a wide range of such criteria for path coverage from which to
choose, and on the basis of this choice a test case generator should examine all
possible program paths and select from them. Coward [10] reviews systems
which use symbolic execution to generate the paths prior to selection. The
problems illustrated there include evaluation of loops, module calls, array
references and path feasibility. The Casegen system of Ramamoorthy [11]
tries to overcome some of these problems.

Coward gives three criteria to be satisfied before a system can be said to
use symbolic execution for this purpose:

- for each path examined, a path condition should be determined.

- it should determine whether each path condition is feasible.

- for each output variable an expression should be produced in terms
of input variables and constants.

A system which does not satisfy these criteria is unlikely to be suitable
for automatic test generation. Six systems described in the literature satisfy
Coward's criteria, namely: EFFIGY (King [12]), SELECT (Boyer [13]),
ATTEST (Clarke [14]), CASEGEN (Ramamoorthy [11]), IPS (Asirelli
[15])and Fortran Testbed (Hennell [16]). These systems have achieved widely
varying levels of automation and we shall only describe CASEGEN here, as
being typical of the technique.

CASEGEN consists of four components:

- a Fortran source code processor.
- apath generator.

- apath constraint generator.

- aconstraint solving system.

The Fortran source code processor produces a flow graph, a symbol
table and a representation of the source code. These are used by the path
generator to produce a set of paths to cover all branches, and the path
constraint generator then determines a path condition for each path. Finally,
the constraint solving system generates values to satisfy each of these
conditions, and these values can be used to create test cases. The strength of
this system is its full coverage of Fortran but it is not yet very reliable.

Coward, trying to avoid these problems, has written SYM-BOL
(Coward [17]) to make improved use of symbolic execution techniques. He
has also tried to generalise path generators - which have been primarily
intended for numerical software written in Fortran - to handle commercial
software written in COBOL. All the common problems which have been
encountered by the developers of path generators are addressed by Coward
so, although SYM-BOL does not accept all of COBOL, it bodes well for
future developments.

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
522 Software Quality Management

Korel [18] describes a white-box automatic test generator which is
based on execution of the program under test, dynamic data flow analysis and
function minimisation rather than symbolic execution. The basic steps are
control flow graph construction, path selection and test generation, and these
can all be automated. This project, in which the program under test must be
written in a limited subset of Pascal, is at an early stage. The problems
encountered when using symbolic execution have been overcome, but there
are others still to be addressed. For example the system's ability to detect
infeasible paths is limited. In this paper Korel suggests several possible areas
for future research.

SMOTL (Bicevskis [19]) is another system of this kind. It conducts
path analysis while maintaining minimum and maximum values for each
variable.

Constraint-based testing (CBT) has been implemented (Demillo [20])
for Fortran-77. However this is such a new strategy that it is, as yet, difficult
to evaluate it. One of the problems with this method is the difficulty of
eliminating redundant or ineffective tests.

Pathwise automatic test generators are promising software development
tools even if after nearly two decades of research in this field several practical
problems still restrict their general use. The problems lie more in the
generation of the possible paths, as illustrated by the symbolic execution
approach, than with the generation of a test set which satisfies given criteria.
Constraint-based testing is very promising; However for efficiency an oracle
would be required. As yet the method does not cater for this.

FUNCTIONAL TESTING

Automatic test-case generators using black-box, or functional,
strategies, derive the information needed to generate tests from a program'’s
specification or test specification. They differ mainly in the type of
specification used and in the sampling method. Most systems require the tester
to write a specification which is oriented to testing. This specification could
theoretically be used as the sole specification but this is rarely done, because
of the limited expressiveness of specifications oriented towards test
generation.

Function Diagram
The AGENT system (Furukawa [21]) generates test cases from a function

diagram, which is an extension of a cause-effect graph [1]. A function
diagram consists of a state transition diagram together with a set of Boolean
functions which are defined using either a cause-effect graph or a decision
table. The tests generated by AGENT satisfy natural criteria defined on the
function diagram:

- they validate input and output conditions in all states.
- they exercise each transition at least once.

Other graph models such as automata (Fujiwara [22]) and Petri nets
(Morasca [23]) have also been used to generate test cases using graph

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 523

coverage techniques. While all of these systems have the advantage of having
well-defined criteria for selecting a test set, they all require a function diagram
for the program under test. For a complex program this could be very
difficult, and it seems unlikely that these systems will be widely used.

Algebraic Specifications
Jalote [24] describes the SITE system which generates test cases from the

axiomatic specification of an abstract data type. The system also provides an
oracle in the form of an automatically generated implementation of the
specification. The test set is generated from the syntactic part of the
specification by producing all possible values of the abstract data type up to a
given maximum degree of complexity. Tests are then generated from the
structure of these expressions.

This system is interesting because of the high degree of automation
which has been achieved, but the approach has several distinctive problems:
its limited scope of application; the difficulty of writing axiomatic
specifications for complex data types; the lack of a theory to underpin the
method of test selection; and the large number of tests generated. It is difficult
to envisage the scope of this system being enlarged because axiomatic
specifications are restricted in scope, and oracles generated from them are still
confined to simple problems or highly restricted domains.

A method is described by Bernot [25] for constructing test cases from
formal specifications and this is applied to algebraic specifications. Again,
despite the case study in Dauchy [26] this approach is limited by the difficulty
of writing algebraic specifications for general purpose programs. This
technique offers hope for interesting developments, perhaps in the domain of
model-based specification languages, because of its good foundation.

Other Approaches

Tsai [27] describes a system which generates test cases from a relational
algebra query. Such queries are frequently used in database and data
processing applications. The efficiency of the system is compared favourably
with random testing and it seems to be efficient and reliable. Further
assessment is however required. The use of relational algebra means that the
system is restricted to the testing of database applications.

Another approach which has been investigated by Dyer [28] is to
identify particular requirements to be tested and filter these through statistical
considerations regarding operational use and risk factors. Unfortunately this
method does not permit complete automation as the statistical values assigned
to the requirements to be tested are largely subjective.

Recent research has thus demonstrated that automated black-box testing
can be a practicable technique. The difficulties in assessing such systems lie in
judging fairly the degree of automation achieved and the efficiency with which
errors in the program under test are discovered. It would be a great advance if
such systems were able to process established specification languages such as
the notation of VDM (Jones [29]) or Z (Spivey [30]) which are already used
for purposes other than testing. North [31] and Dick [32] have shown that test
generation from VDM specifications is possible.

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
524 Software Quality Management

WHITE-TINTED TESTING

As indicated above, one attraction of black-box testing is that the tests are
independent of the implementation to be tested. Generating tests from a
model-based specification written in (for example) the notation of VDM is also
appealing because it opens up the possibility of using an existing specification
rather than insisting on one which has been written specifically for testing.
This, therefore, is the basic approach that we have decided to follow.

Our approach however is not purely black-box and therefore differs
from that of Dick, because of the impossibility of reaching certain system
states using test suites. Nicholl [33] has shown that some states in model-
based specifications may well be unreachable. We therefore insist that the
tester have access to the source code of the system under test, in order to
instantiate the system state variables with the test values generated. The exact
mechanism for this is not yet decided.

It is intended that our test generation system will parse a VDM
specification and record the following for each function/operation:

- the basic type of and any invariant for each variable
- the pre-condition

- the exception handling part

- the post-condition

Tests will be generated for each of these components adopting a generic
strategy suitable for each kind of testing. Testing pre-conditions and the types
and invariants of variables is mainly useful for front-end functions only - but
this is often ignored - whereas testing the exception handling part and the
post-condition is valid for every function of the specification.

The strategy adopted is, conservatively, based on partitioning of the
input and/or the output space by applying a series of rules to the part of the
specification considered. Constraints generation and constraints solving rules
will be used, and the result of applying these rules will be frames. As an

example of constraint generation rule the v—rule is:

A A—=-B;—-A AB;AAB;

— note that the last sub-domain is only generated if the v—rule is applied to a
post-condition component of the specification.

Unlike Dick's system, constraints generation and constraints solving
rules could be interleaved in our system, thus avoiding the explosion of sub-
domains in the partition generated. Consistency checking of the expression
generated will be carried out automatically. The rules will be written and
applied using constraint logic programming (in Prolog III, Colmerauer [34]).
The outcome of applying the generic approach will be a collection of final test
frames which can be instantiated to generate tests.

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 525

In theory, this approach is complete in that it should generate all the tests
usually seen as appropriate for performing black box testing. However, it is
anticipated that there will be a number of limitations induced by the
implementation especially at the consistency checker level where compromises
will have to be made and/or manual intervention required.

Any general attempt to predict a specific result from a model-based
specification must fail because such a specification may well be non-
deterministic. Our system will provide an oracle by interpreting the
specification using the results from the program under test, that is the part of
the specification considered for the generated test will be evaluated to see
whether they are satisfied regarding the test applied and the corresponding
result.

Example
In his reference guide to VDM-SL Dawes [35] gives an example of a

specification of a vending machine to dispense tea, coffee (with or without
milk or sugar) or chocolate. The specification takes into account the price of
the various drinks, available stocks of the raw ingredients and cups etc. The
pre-condition for the operation GET_DRINK is

pre (V i € INGREDIENTS(choice) - STOCKS(i) > 0)
A (CUPS > 0)
A (BALANCE 2 PRICES(choice)

which means that the machine has in stock all the ingredients for the
chosen drink choice, that there is a cup in which to dispense the drink, and
that the amount of money inserted, balance, is sufficient to pay for the drink.
The original frame for this pre-condition is:

ASSUMPTIONS: @

CHOICE:
Drink = Tea-or-coffee | CHOCOLATE
Tea-or-coffee :: FLAVOUR: TEA | COFFEE

WHITE :IB

SWEET :IB
Ingredient = TEA | COFFEE | CHOCOLATE | MILK | SUGAR | WATER

Money = IN
Prices = Drink =3 Money
Stock = Ingredient 3N
invsa Vi Ingredient * i € dom s
INGREDIENTS : Drink =3 Ingredient-set &

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
526 Software Quality Management

{CHOCOLATE B {CHOCOLATE, WATER}} U
{d P {d.FLAVOUR, WATER} U

(if &.WHITE then {MILK} else {}) L
(if &.SWEET then {SUGAR} else {}) | d : Tea-or-coffee}
choice : Drink
BALANCE: Money
STOCKS: Stock
CUPS:IN
PRICES: Prices
SPLIT:

(31 € INGREDIENTS(choice) * STOCKS(i) < 0)
v (CUPS < 0)

v (BALANCE < PRICES(choice)
DATA CHOICE SET:
choice, BALANCE, STOCKS, CUPS, PRICES

When applying the rules, a series of intermediate frames is generated before
obtaining a collection of final frames, one of which is:

ASSUMPTIONS:
Drink = Tea-or-coffee | CHOCOLATE
Tea-or-coffee :: FLAVOUR: TEA | COFFEE

WHITE :|1B

SWEET :IB
Ingredient = TEA | COFFEE | CHOCOLATE | MILK | SUGAR | WATER
Money = IN

Prices = Drink = Money
Stock = Ingredient 3 Ninvs & Vi Ingredient * i€ doms

INGREDIENTS : Drink =3 Ingredient-set &
{CHOCOLATE B {CHOCOLATE, WATER} } U
{d B {dFLAVOUR, WATER} U

(if . WHITE then {MILK} else {}) U
(if d.SWEET then {SUGAR} else {}) | d : TEA-or-coffee}
choice : Drink

BALANCE: Money

PRICES: Price

CUPS: N}

BALANCE = PRICES(choice)
STOCKS(CHOCOLATE) =1
STOCKS(COFFEE) =1
STOCKS(TEA) =1
STOCKS(MILK) =1
STOCKS(WATER) =1
STOCKS(SUGAR) =0

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 527

SUGAR € INGREDIENTS(choice)
CHOICE:
%)
SPLIT:
1)
DATA CHOICE:
STOCKS

The test set which will be generated for this precondition includes:

Choice = CHOCOLATE
BALANCE =0

STOCKS = {TEAB 1; COFFEEPR 1; CHOCOLATEBP 1;MILKBP I[;

SUGARBP 1; WATERB 1}
CUPS =1

PRICES = {CHOCOLATEB I;
Tea-or-coffee(TEA, false, false) P 1;
Tea-or-coffee(TEA, true, false) P 1;
Tea-or-coffee(TEA, false, true) B 1;
Tea-or-coffee(TEA, true, true) B 1;
Tea-or-coffee(COFFEE, false, false) P 1,
Tea-or-coffee(COFFEE, true, false) P [;
Tea-or-coffee(COFFEE, false, true) ¥ 1;
Tea-or-coffee(COFFEE, true, true) ¥ 1}

Choice = CHOCOLATE
BALANCE =Max_N-1

STOCKS = {TEAP 1; COFFEEB 1; CHOCOLATEBR I;MILKB I;

SUGARBP 1; WATERBP 1}
CUPS =1

PRICES = {CHOCOLATE P Max_N;
Tea-or-coffee(TEA, false, false) P 1;
Tea-or-coffee(TEA, true, false) P 1;
Tea-or-coffee(TEA, false, true) ¥ 1;
Tea-or-coffee(TEA, true, true) P 1;
Tea-or-coffee(COFFEE, false, false) P 1;
Tea-or-coffee(COFFEE, true, false) ¥ 1;
Tea-or-coffee(COFFEE, false, true) P 1;
Tea-or-coffee(COFFEE, true, true) P 1}

Choice = CHOCOLATE
BALANCE =0

STOCKS = {TEAB 1; COFFEEP 1; CHOCOLATEBP 1;MILKB 1;
SUGARP 1; WATERB 1}

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
528 Software Quality Management

CUPS =1

PRICES = {CHOCOLATEB Max_N;
Tea-or-coffee(TEA, false, false) P 1;
Tea-or-coffee(TEA, true, false) ® 1;
Tea-or-coffee(TEA, false, true) B 1;
Tea-or-coffee(TEA, true, true) B 1;
Tea-or-coffee(COFFEE, false, false) ® 1;
Tea-or-coffee(COFFEE, true, false) ® 1;
Tea-or-coffee(COFFEE, false, true) P 1;
Tea-or-coffee(COFFEE, true, true) ¥ 1}

CONCLUSIONS

Automatic test generators have not reached a state where it would be
appropriate to make widespread use of them for testing general-purpose
programs. The lack of a theoretical underpinning is partially to blame for this
situation, but it should be possible to improve the tools even within the
context of the current theory (Hamlet [36]).

None of the three main strategies has reached the stage where full
automation has been achieved and the strategy trusted. Using functional
testing - the strategy we have chosen - the standardisation of languages such
as Z and the notation of VDM should provide sound bases for the
implementation of testing tools. It is expected however (Bertolino [37]) that,
even given further technological developments, human competence and
ingenuity will remain the sine qua non requirement for useful testing.

ACKNOWLEDGEMENTS

The work described in this paper has been supported by SERC and by the
European Commission, contract ERBCHBICT930328.

REFERENCES
1. Myers, G.J. The art of software testing. Wiley-interscience, 1979.
2. Hamlet D. and Taylor R. Partition testing does not inspire confidence.

IEEE Trans. Soft. Eng. Vol. 16, No. 12, pp 1402-1411, 1990.

Duran J.W. and Ntafos S.C. An evaluation of random testing. IEEE
Trans. Soft. Eng. Vol. 10, No. 4, pp 438-444, 1984.

Weyuker E.J. and Jeng B. Analyzing partition testing strategies. IEEE
Trans. Soft. Eng. Vol. 17, No. 7, pp 703-711, 1991.

Bazzichi F. and Spadafora I. An automatic generator for compiler
testing. IEEE Trans. Soft. Eng. Vol. 8, No. 4, pp 343-353, 1982.
Beizer B. Computing reviews, No. 9201-0020, pp. 67-67, 1992.
Deutsch M.S. Software verification and validation; realistic project
approaches. Prentice-Hall series in software engineering, 1982.

Kopetz H. Software reliability. Macmillan Computer Science Series,
1979.

Hetzel W. The complete guide to software testing. Q.E.D. Information
Sciences Inc., 1984.

(O8]

>

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517

Building Quality into Software 529

10. Coward P.D. Symbolic execution systems - a review. Soft. Eng. Jnl.
Vol. 3, No. 6, pp. 229-239, 1988.

11. Ramamoorthy C.V., Ho S.F. and Chen W.T. On the automated
generation of program test data. IEEE Trans. Soft. Eng. Vol. 2, No. 4,
pp 293-300, 1976.

12. King J.C. Symbolic execution and program testing. Comm. ACM, Vol.
19, No. 7, pp. 385-394, 1976.

13. Boyer R.S., Elpas B., and Levit K.N., SELECT - a formal system for
testing and debugging programs by symbolic execution. Proc. of Int.
Conf. Reliable Software, pp. 234-244, 1975.

14. Clarke L.A. A system to generate test data and symbolically execute
programs. IEEE Trans. Soft. Eng. Vol. 2, No. 3, pp. 215-222 1976.

15. Asirelli P., Degano P., Levi G., Martelli A., Montanari U., Pacini G.,
Sirovich F. and Turini F., A flexible environment for program
development based on a symbolic interpreter. Proc. of Fourth Int.
Conf. on Software Engineering, Munich, Germany, pp. 251-263,
1979.

16. Hennell M.A., Hedley D. and Riddell 1.J. The LDRA software
testbeds: their roles and capabilities. Proc. of IEEE Software Fair 1983
Conference, Arlington, VA, USA, 1983.

17. Coward P.D. Symbolic execution and testing. Information and
Software Technology, Vol. 33, No. 1, pp. 53-64, 1991.

18. Korel B. Automated software test data generation. IEEE Trans. Soft.
Eng. Vol. 16, No. 8 , pp. 870-879, 1990.

19. Bicevskis J., Borzovs J., Straujums U., Zarins A. and Miller E.F.
SMOTL - a system to construct samples for data processing program
debugging. IEEE Trans. Soft. Eng. Vol. 5, No. 1, pp. 60-66, 1979.

20. Demillo R.A. and Offutt A.J. Experimental results from an automatic
test case generator. ACM Trans. Soft. Eng. and Meth., Vol 2, No. 2,
pp- 109-127, 1993.

21. Furukawa Z., Nogi K. and Tokunaga K. AGENT: an advanced test-
case generation system for functional testing. AFIPS Press National
Computer Conference, Vol. 54, pp. 525-535, 1985.

22. Fujiwara S., Bochmann G.v., Khendek F., Amalou M. and Ghedamsi
A. Test selection based on finite state models. IEEE Trans. Soft. Eng.
Vol. 17, No. 6, pp. 591-603, 1991.

23. Morasca S. and Pezze M. Using high-level Peiri nets for testing
concurrent and real-time systems. Real-time systems, theory and
applications, H. Zendan (Ed.), North-Holland, pp. 119-131, 1990.

24. Jalote P. Specification and testing of abstract data types. Computer
Language, Vol. 17, No. 1, pp. 75-82, 1992.

25. Bernot G., Gaudel M.C., and Marre B. Software testing based on
formal specifications: a theory and a tool. Soft. Eng. Jnl. Vol. 6, No 6,
pp. 387-405, 1991.

26. Dauchy P., Gaudel M.C. and Marre B. Using algebraic specifications
in software testing: a case study on the software of an automatic
subway. Jnl. Sys. Soft. Vol. 21, No. 3, pp. 229-244, 1993.

27. Tsai W.T., Volovik D. and Keefe T.F. Automated test case generation
for programs specified by relational algebra queries. IEEE Trans. Soft.
Eng. Vol. 16, No. 3, pp. 316-324, 1990.

28. Dyer M. Distribution-based statistical sampling: an approach to software
functional test. Jnl. Sys. Soft. Vol. 20. No. 2, pp. 107-114, 1993.

@% Transactions on Information and Communications Technologies vol 9, © 1994 WIT Press, www.witpress.com, ISSN 1743-3517
530 Software Quality Management

29. Jones C.B. Systematic software development using VDM. Prentice-
Hall International Series in Computer Science, 1990.

30. Spivey J.M. The Z notation, a reference manual. Prentice-Hall
International Series in Computer Science, 1989.

31. North N.D. Automatic test generation for the triangle problem. NPL
Report DITC 161/90, 1990.

32. Dick J. and Faivre A. Automating the Generation and Sequencing of
Test Cases from Model-Based Specifications. FME '93: Industrial-
Strength Formal Methods. Odense, Denmark 1993. Springer-Verlag
Lecture Notes in Computer Science 670, pp. 268-284, 1993.

33. Nicholl R.A. Unreachable states in model oriented specifications.
University of Western Ontario, Dept. Comp. Sc. Report No. 175,
1987.

34. Colmerauer A. An Introduction to Prolog III. Comm. ACM Vol. 33,
No. 7, pp. 69-90, 1990.

35. Dawes J. The VDM-SL Reference Guide. Pitman Publishing, London,
1991.

36. Hamlet R. Special section on software testing. Comm. ACM Vol. 31,
No. 6, pp. 662-667, 1988.

37. Bertolino A. An overview of automated software testing. Jnl. Sys.
Soft., Vol. 15, No. 2, pp. 133-138, 1991.

