@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software design through artificial expertise

P. Garratt, D. Karami
Department of Electronic and Computer Science, University
of Southampton, Hampshire S09 5NH, UK

ABSTRACT

Software engineering activities involve tools, methods, programming languages,
and human intelligence. In the past, software engineers were concerned with
isolated criteria such as functionality, and scheduling in different periods of time.
In the 1980’s, when Information Technology was widely available to individuals
due to the breakthroughs in computer hardware technology, they were mainly
concerned with the cost attribute of software development and software quality
was partially ignored. The term software quality has mistakenly been taken for
excellence which is far from the quality of today’s software systems. We believe
the ultimate quality goal is user satisfaction. And in the 1990’s software quality
will be brought to the centre of the development process. Software quality is a
multidimensional concept which covers:

o the entity of interest: the final deliverable items.

e the view point on the entity: the final customer’s, the developing organisa-
tion’s, and the project manager’s viewpoints.

o the entity attribute contributing to the quality: the designer’s viewpoint of
the reliability of the deliverable items, and the manager’s viewpoint of the
elapsed time.

Meeting the quality objectives in the final product requires quality tools and
methodologies contributing to the development process. This paper discusses the
use of expert systems in the software development process. Their use contributes
to higher quality in the entities mentioned above. Expert systems achieve part of
their effectiveness by reducing the complexity of software development.

INTRODUCTION

Software Engineers must be primarily concerned with the optimisation of quality
in their professional output. In a typical software development project it is
never economic to maximise the quality of all deliverable items. Quality must
instead be optimised in relation to other objectives. The reasons for this are well
understood [25]. A software development project has a schedule and a budget
and the attainment of high quality generally implies an extension of the time
spent developing the software and an increase in the cost. The end result is
always a trade-off between these three mutually conflicting objectives. Also,
quality is a multidimensional concept. The professional output of a software
engineer comprises many separate and diverse items, not only executable code
but also documentation, manuals for the users and future maintainers, schedules,
test plans, test harnesses and so on. Assessing the quality of all these diverse
deliverable items is a many faceted task. It requires different quality metrics for

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

820 Software Quality Management

each item and recognition of the different factors affecting the quality of each
item.

The viewpoint from which quality is assessed is never unique. The developing
organisation has its view, as does the end user, the management of the end user,
project manager, project worker and every professional involved in a software
project. These differing perspectives complicate the assessment of quality. Ma-
jor manufacturers such as ICL confront this problem with large scale company
initiatives [16]. Some of the complication is shown in Table 1.

DELIVERABLE PERSPECTIVE
ITEM U UM D DM SS __ SA _ DPF
FUNCTIONAL 3 3 3 3 2 2 0
SPECIFICATION
PROJECT
PLAN 2 2 3 3 2 2 2
QUALITY 1 1 3 3 0 2 0
| MANAGEMENT
ACCEPTANCE
TEST SPEC. ! 3 2 2 ! ! 0
SYSTEM
SYSTEM 1 1 3 2 0 0 0
CODED 0 1 3 2 0 0 0
MODULES
TESTED 0 1 3 2 0 0 0
MODULES
INTEGRATED 0 1 3 2 0 0 0
SUB SYSTEMS
INTEGRATED 1 1 3 2 0 0 0
SYSTEMS
TOTAL SYSTEM 2 2 3 3 2 1 0
USER 3 2 0 1 3 1 0
DOCUMENTATION
USER TRAINING | 3 3 1 2 1 1 1
PLAN
SYSTEM 2 3 2 2 1 0 2
CONVERSION PLAN
RUNNING 3 3 1 2 3 2 1
SYSTEM
INSTALLED 3 3 0 2 2 2 0
SYSTEM
U: USER §S: SUPPLIER SALES 1: QUALITY LESS
UM: USER MANAGEMENT SA: SUPPLIER ACCOUNTANTS RELEVANT
D: DEVELOPER DPE: DEVELOPER PERSONNEL FUNCTION 2: QUALITY RELEVANT
DM: DEVELOPER MANAGEMENT 0: QUALITY IRRELEVANT 3: QUALITY MORE
RELEVANT

Table 1: Quality optimisation in software engineering

The trend in recent years has been to attach more and more importance to the
quality view as perceived by the end user since information technology has become

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 821

used more and more by non-professionals with the growth in personal computing
and the spread of user friendly Human/Computer Interfaces [17]). However, the
quality views of other people involved in the system development and the end
product should never be discounted. In particular, safety critical software has a
special quality requirement regardless of the views of the end users [21].

Many software metrics have been developed whose objectives are in part to
quantify the quality attributes and entities concerned in a software project [22].
Some metrics are appropriate to some deliverable items, none is appropriate to
all. Some metrics are relevant to end users, some relevant to the developers, again
no metric is relevant from all quality perspectives. A significant generalisation
regarding metrics could be that the easier the metric is to measure the less use
it is in practice. On a typical software project the software engineers will choose
and use those metrics which are practical to gather and which give a good return
in usefulness on the effort invested on gathering. For instance many count the
number of bugs found during testing. When the rate falls to an acceptable level
this metric has served its main purpose.

The factors affecting the professional activities of a software engineer and
thereby influencing the quality of the deliverable items that he or she produces
have not been thoroughly explored. The effects of, for instance, formal methods,
programming support environments, software workbenches, intelligent design aids
and other features in the development environment are under continual scrutiny
in the industrial and academic world. However, most of the results of these
investigations are empirical since the conducting of controlled experiments in
software engineering is difficult or impossible [19]. The implication is that the
true effects on metrics relevant to the deliverable items of features in the software
development environment has rarely, if ever, been scientifically proven. Despite
this, many mathematical models have been developed which attempt to predict
cost, time scales and quality for new projects based on past similar projects,
the nature of the software to be developed and the nature of the development
environment [15]. These models are widely and successfully used in industry.
But their results are interpreted by the human managers of the projects then
adapted and modified before they are applied to the management of the project
[23]. In general it seems to be true that the intervention of a human expert in
applying and interpreting quality predictors is essential in practice. We believe
that no single existing mechanism for quality prediction and management is broad
enough in scope to cover the multidimensional nature of the concept of quality
in the deliverable items of a software engineering project nor broad enough in
scope to encompass the diverse viewpoints of quality of all the people involved in
developing, maintaining, using and managing an information technology system.
The key to successful optimisation of quality may be in heuristic decisions on
software design. re-use and risk. We feel that there is a role for an expert system
in assisting decision makers in software development and we have embarked on
the construction of a prototype for assisting in quality optimisation.

Figure 1 illustrates the relationship between our quality optimiser and other
expert systems which have been developed in software engineering. A quality
optimiser can be regarded as a meta-assistant to help the manager choose the
development environment, the management strategy and to assess the likely effect

27

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

822 Software Quality Management

of these factors on the qualities of the deliverable items that will emerge during
the course of the software project.

Perspective of Quality

3R

w End Users and Management

~
N~
~
~
~
~
~
~

QUALITY
OPTIMISER

factors affecting Developers and Management
quality:

: u |
Development Team Management Expert
Environment Organisation Strategies | Systems

/N T

Entities assessed: Deliverable Items

Figure 1: Quality optimisation in software engineering

In this paper we are particularly concerned with the application of knowledge
based or expert systems in software engineering. We are investigating this avenue
because we believe this research alternative is highly promising in addressing
software issues [24].

THE SOFTWARE DEVELOPMENT ISSUES

Since the advent of transistors, computer technology has enormously influenced
the quality of our life. As a result of technological improvements during the last
twenty years, the affordability of computer hardware has dramatically increased.
Consequently, computer-based solutions and computerization have found their
way into many new industries and different aspects of our lives.

These increased demands for computer technology have been accompanied
by corresponding demands for increased productivity, quality and reliability of
software systems. Unfortunately the improved performance and increased cost-
effectiveness of computer hardware components have not been parallelled by the
same improvements in the software arena. We now find the industry in the situ-
ation where software production is the major cost component of a computerised
solution to a problem. The software engineering of the right system itself is a
major challenge. This state of software production has repeatedly been referred
to as the software crisis.

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 823

Although today, software development is recognised as alegitimate engineering
discipline whose methods have successfully been accepted in other areas of engin-
eering, managers and developers alike recognise the need for a more disciplined
approach to software development [1].

For hardware technology a well developed approach has been with us since
the sixties. This approach includes scheduling, cost estimation and reliability
considerations. A similar approach to software technology lacks 20 or 30 years
of maturity [2]. This comes from the major difference between software and
hardware, that is the difference between manufacturing or production and devel-
opment.

The essential properties of software entities have contributed greatly in the
current state of software crisis [3]. Software entities are complex in nature. To
overcome complexity, mathematical modelling is often employed. This paradigm
works well in situations where the complexities ignored by the model are not the
essential properties. An example is the formulation of optimisation problems in
production engineering as differential equations. The paradigm does not work
where the complexities are the essence and can not be abstracted safely.

Although software entities are complex phenomena we must model, measure
and manage software developnient if we want to keep the users satisfied. We must
increase our understanding of the software product and the process through which
it is designed, developed, and maintained.

Major breakthroughs in the past such as unified programming environments
removed some of the accidental properties of software and eased the pressure of
demands for higher productivity. Still, issues within the software development
arena remain to be dealt with: the software quality issue and life cycle model and
the associated problems.

The software life cycle

It is important to examine important software issues to study new alternatives for
software development and supporting environments. Such investigation enables
us to identify the potential improvements that directly address the problems and
issues of software development.

The complexity of software projects has led the software industry to devise
paradigms that view software development as a series of somewhat independent
development phases. Such software life cycle models associate particular goals
to each phase, and provide validation procedures as mechanisms to detect any
errors before proceeding on to the later one. As additional checks, some models
provide mechanisms to test against the products of the later phase to verify the

products of the earlier phase, thus introducing feedback into the process. Even
with these improvements, the life cycle model has several drawbacks which have
been strongly criticised suggesting that the life cycle model is simply inappropriate

(4]
Problems in the early phases The early phases of software development are often
considered to be the most important phases since the cost of undetected errors is

magnified with each successive phase. Unfortunately, system requirements can
rarely be adequately stated in advance and are bound to change during the
development phases. Dealing with such a moving target is completely beyond

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

824 Software Quality Management

the capability of the traditional life cycle activities.

Another problem is the lack of end-user involvement in these early phases of
development. Consequently, the specifications may not be correct with respect to
the needs of the user. This will increase the cost of product maintenance since
many product faults are not detected until after the product is handed over to
the user. The cost of modification in the maintenance phase could well be up to
65 times more than in the development phase [1]. Moreover, it is difficult for the
end-user to appreciate the intermediate products of the early phases since there
is nothing concrete and executable, to evaluate.

The lengthy life cycle In the traditional life cycle, no phases can begin until the
preceding one has been completed. The sequential nature of the process causes the
project to extend in time. Correspondingly, the final product takes a long time to
appear. Even if the system requirements could be stated fully at the beginning of
the project, they could not expected to remain unchanged throughout such long
development period. This causes damage to the user’s confidence. In some cases
the final product may no longer satisfy the current user’s needs.

The life cycle is lengthy because for a long time we believed that specifications
are the only means to describe the system functionality without saying how that
functionality is to be implemented. We believed that the implementation phase
copes with the how to aspect of the development. In many cases the division
between requirements and specifications are vague. The requirements normally
identify the needs that have to be addressed by the system. A large portion of
requirement definitions is the incomplete system specifications. The specifications
could be viewed as the implementation of some higher level specifications, because
there is a refinement relation between specification and implementation [5].

To manage the increasing complexity of software systems, several development
models have been introduced during the past 35 years. The code and fixr model
used in the late fifties and early sixties, provided too much flexibility. The resulting
systems were very difficult to test and maintain.

The waterfall model The waterfall model [6] provided more structure. The water-
fall model is successful because it impose some discipline over the overall task of
software development and is documentation-driven. The major disadvantage of
this model is the lack of end user involvement in the specification phase.

The rapid prototyping model As its names suggests rapid prototyping deals with
the lack of user involvement in the early phases of the life cycle by getting him
involved as much as possible through interactions with the prototypes. The
main idea is to catch specification errors and correct them before too much effort
has been expended in implementing the erroneous specifications. Prototypes are
discarded after they are evaluated. The overhead here is the cost of the throw away
prototypes. There are alternatives which compensate for this drawback namely
operational specifications, and automatic programming [5]. The problem with the
operational specifications is that the program has to be specified in a somewhat
restrictive formal language. The problem here becomes more clear as many real
types of programmes can not be specified so easily, therefore the rapidness concept
is lost in preparing the specifications.

Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 825

The evolutionary model The evolutionary model [4] provided a multi-version product.
The product operational growth is incremental to cope with the evolutionary
nature of the requirements. The existence of this model acknowledges that fact
that it is not possible to completely get the requirements of a complex system
defined up front.

The spiral model The spiral model [7] was first introduced to explicitly encompass
multiple cycles of planning and prototyping for risk management and put dynam-
ism on top of the development process. Therefore, there was a paradigm shift
from a document-oriented to risk-oriented development process. The X model,
a deviant of the spiral model, was later introduce incorporating the concept
of software reuse [8]. There have also been a few new paradigms that places
emphasis on prototyping and re-use as a means of minimising risks to achieve
higher productivity [11], [6], [12].

The mythology issues

Unlike human myths the software myths contribute the confusion and misunder-
standing amongst the software engineer camps. They bear some elements of truth
and appeared to be reasonable statements mainly gathered from past experience.
They have produced confusion and misleading attitudes that have caused serious
problems for managers and technical people alike. However, old habits die hard,
therefore the software myths are still believed as we move towards the fifth decade
of software. The following sections show the most common myths as well as the
corresponding statements of reality [1].

The management’s myths Software development managers are under the pressure
to maintain the project within the budget, keep the time schedule from slipping,
and improve quality. Therefore, relying on myths to avoid disappointment during
the course of projects.

Why should we change our approach to software engineering? we are doing
the same kind of programming as we did ten years ago. Although the application
domain may be the same as what it was ten years ago (for many organisations it
has changed substantially), the demand for greater productivity and quality and
the importance of software for many strategic business objectives has increased
dramatically.

Our staff has the best of state-of-art technology they can get for good software
practise. It take more than the best mainframe or the best PC available to
produce quality software. Software tools such as programs assisting programmers
to create programs are much more important than the hardware needed for
achieving productivity, quality, and reliability needed to meet the objectives of
some strategic businesses.

If we are running short of time we always can add new programmers to catch
up with the schedule. In the words of Brooks [3]: ¢ ... adding more people to
a late running project can only makes it later.” This statement is reasonable
because as new programmers are added the time wasted due to communication
and learning amongst the staff reduces the time to be spent on the more productive
development.

The customer’s myths Custoniers do believe in myths as well as the managers
and software practitioners. These misleading beliefs eventually leads to customer

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

826 Software Quality Management

false expectation of the software and ultimately to his dissatisfaction with the
developer.

A general statement of the objectives is sufficient to begin writing programs.
We can always fill in the details later. Poor program definition is the major cause
of the failed software projects. Formal definition of the information domain, the
exact functionality, the design constraints, interface, and the validation criteria are
the essentials to start the project with. These characteristics are only determined
when the true communication between the customer and the developer team has
taken place.

Project requirement changes continually, but changes can be accommodated
easily because software is flexible. It is true that software requirement change,
but the impact of change varies with the time it is introduced. The modification
introduced during the implementation leads to a sharp rise in the cost and can
cause upheaval that requires additional resources and even dramatic changes in
the design.

The practitioner’s myths Myths beloved by software practitioners have been fostered
by forty years of programming culture. Then programming was considered an art.
Is it the case today?

The only deliverable for a successful project is the working program. A working
program is only one part of a software configuration that includes all elements
such as plans, requirements specification, design of the data structures, design of
test specifications, and the working program. Documentation forms an important
basis for a successful development and more importantly it provides guides for
software maintenance task. Table 1 shows a minimum set of deliverable items.

Once we write the program and get it to do what it is meant to do, our job is
completed. With computer software, the sooner you begin to write the code the
longer it takes to get it done. The data obtained from industry indicates that 50
to 70 percent of all effort expended on the program will be expended after it has
been handed over to the customer for the first time [1].

The quality issue

A poorly designed system although might be put together quickly so that it
process an acceptance test correctly, has poor quality because it may cause extra
repair cost later on. Thus improving the quality of the deliverable software is a
major goal of research in software engineering.

Once in the eighties low-cost software applications became practical and widely
implemented by the vendors, the importance of productivity in software develop-
ment increased substantially. This informed a mass market of rather unsophist-
icated customers with its potential of large sales which increased the demand on
quality. The cost, functionality, his satisfaction and the rate of software failure
are important product quality from a user stand point.

From another stand point quality software has to be developed through a
quality-oriented development process. Such development process views the final
product passing through a series of stages. Each stage introduce an intermediate
product with its own quality attribute which have to satisfied before passing on
the intermediate product to the next stage. For example, the designer is the user
of the requirements specification. The designers develop system architecture and

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 827

unit specifications. They ultimately produce the design document. The quality
attributes of the design document are readability and completeness in meeting
system requirements.

KNOWLEDGE-BASED SOFTWARE ENGINEERING

In the previous section, we discussed the main software development issues. The
fundamental software challenge is now how to develop software faster, better and
cheaper.

Most software problems come from the facts that the specification is not well
understood by the programmers, the desired behaviour is not well understood by
the requirement analyst or the user, and the programmers of one subsystem do
not understand the effects their code may have on overall system performance.
Besides, when the code is written a lot of knowledge is simply lost. That is
the code is the concentrated version of decisions made from requirements down
to design. Usually the knowledge regarding decision making and the reasoning
behind them are not made explicit. Even if it is made available its volume makes it
impossible to use in traditional software engineering practice. This makes software
development an enormously knowledge-intensive task.

Al deals with how to extract useful information from a large bulk. From the
handling of information standpoint, Al in general and knowledge-based systems
in particular can improve software engineering not only by explicitly representing
such a knowledge, but also by showing intelligent behaviour using that knowledge.
A paradigm exploiting this knowledge-intensive nature of software development
will be very appropriate to improve both the quality of software design and the
flexibility and acceptability of final product.

One way to gain higher productivity and better quality is through changes
in the educating process of software engineers in the universities [9] and through
training human designers.

Alternatively, in an attempt to make the machine bear some of the burden of
development task, one has to capture the expertise of human designers and make
it available to the novice designers in the form of artificial expertise through
knowledge-based or expert systems. Such systems emphasize the identification,
encoding and automatic use of knowledge relevant to a task, and are built using
techniques borrowed from Al and ES fields which especially address knowledge-
intensive activities [10].

KBS and CASE software engineering CASE tools provides a step towards the
automation of software development. The ultimate goal in CASE is integrated
tools that support all phases of software process allowing information from one
phase to be used in another. This information sharing typically involves the use
of data bases to store and access the information from the various tools. The
capability of CASE tools can be extended in two ways by the application of Al
techniques:

The evolutionary approach At the simplest level the evolutionary approach in-
volves replacing the data bases currently used in CASE tools with knowledge
bases. Knowledge bases are the augmentation of data bases allow new facts to be

derived from the combination of other facts. They also provide mechanisms such

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

828 Software Quality Management

as support for objects and feature inheritance. Therefore, knowledge bases can
support reasoning rather than simply storing the facts. This improved reasoning
ability therefore can be used to improve the performance and range of current
CASE tools [13].

The revolutionary approach The application of Al techniques can be used to
fundamentally change the notation of case tools. There are three points to
consider in order to produce fully automated systems.

First, we can formalise the knowledge used in the development process. This
formalisation means have a specification language, and an explicit set of operators.
Refinements, can therefore be applied to the specification or the code at different
stages of the development process.

Second, we have to develop and use formal domain models because software
cannot be understood nor be developed if its relationship to the application
domain is ignored. Having the domain knowledge separate from the programming
knowledge will facilitate the transfer of the tools from one domain to another.

Third, we can change the development process so that the verification and
maintenance are done on the specification rather than the source code. Our goal
is to make the process of going from specification to code as easy as possible. When
it is easy enough it will be feasible to make any changes on the specification and
use the design system to reimplement from here.

Now, suppose our systems are not fully automated but remember all decisions
made during development. If the decisions made are fully detailed and accessible
understanding software during maintenance will be very much easier. During
software maintenance one can replay the decision sequence and only change
decisions of the first design, where the modification of software makes it necessary.

It is not enough to know what the decisions were; it is necessary to understand:
the rationale behind the decision making, the goals being met, and the conditions
which led us to this choice.

Software development and expert systems: Promises and applications

The population of software engineers globally amounts to 10 million [14]. This
number of software engineers can not simply cope with the increased demand
for software systems. Since the software engineers are in short supply and more
expensive, the promise of cheap advise through expert system technology has
become more evident. To deal with the shortage of software engineers, even the
great human designers, rather than rely on their expertise as we have done in the

past, we develop expert systens.

There are other excellent reasons to use artificial expertise to enhance human
reasoning: one advantage of artificial expertise is its performance. Human expert
must constantly rehearse and use his expertise otherwise he will lose it. Whereas,
once the artificial expertise is acquired, it is around forever. Another advantage
of artificial expertise is the ease with which it can be transferred or reproduced.
Transferring knowledge from one human to another is the lengthy, expensive and
laborious process which is called education/knowledge engineering. Human ex-
pertise are more unpredictable in that human expert may make different decisions
in identical situations because of emotional factors for example because of time
pressure or stress he might forget using an important rule in a crisis situation.

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 8§29

Finally, artificial expertise is costly to develop, but once developed is relatively
inexpensive.

The applications Today CASE technology faces new challenging areas. The
investigation of such areas is likely to produce some application areas which suit
expert system technology.

First, because software entities are extremely complex [Brooks87], therefore
they are highly error prone. Roughly 25 to 50 percent of the development cost is
spent on error removal activities [14]. Any aid promising the cost-effective error
removal will be appreciated amongst the developers.

Second, huge amount of documentations are prepared which often forms up
to 50 percent of the total cost of development. For example, 400 words of English
form the documentation for a single line of code written in Ada for a typical U.S.
military software development [14]. This challenging area could be addressed
either by the CASE industry or through expert system technology.

Third, the concept of re-usability has been a weak link of software technology
since it was formed 5 decades ago. The challenge for an expert system tool could
be to support re-usability at multiple levels such as project plans, specifications,
code, and documentation.

The optimiser expert system

Regarding the evaluation of software quality, many quality characteristics have
been introduced. Each software entity owns many quality attributes for which
a number of quality metrics exist. The existence of such numerous quality
metrics has made the process of evaluating software quality exhaustive enough
to undermine the accuracy of quality evaluation. The measurement of these
quality metrics are mostly based on empirical techniques and heuristic knowledge
employed by the experts in quality control. Such performance is labour-intensive,
time-consuming, and exhaustive. The oversight and omission, performed by
human, associated with such processes cause the result of quality evaluation to
be less accurate.

In the department of Computer Science, we are developing an expert quality
optimiser system to address the inaccuracy problem of software quality control.
The diagnostic nature of such problem well fits in with the characteristics of an
expert system.

THE QUALITY OPTIMISER AS AN EXPERT SYSTEM

In the previous two sections we have examined current software development issues
and summarised the value of expert systems in relation to software engineering.
We contend that a useful design approach to best meet the functions of a quality
optimiser must involve the use of artificial intelligence. Partridge [24] suggests
there are three classes of interaction between artificial intelligence and software
engineering. Qur quality optimiser falls into the class of an AI based support
environment. It serves the purpose among others, of reducing the complexity of
software development for the managers of the software project and for the software
engineers.

The quality optimiser needs general software development knowledge and
specific domain knowledge, it also needs to make heuristic decisions to provide

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

830 Software Quality Management

the software engineer with timely warnings and filter out unnecessary distractions.
Expert systems perform a range of tasks as identified by Waterman’s criteria [23].
Where an expert system performs a trivial task at which almost everyone is good
this is considered an inappropriate use. At the other extreme it is considered
impractical to design an expert system to perform a task which hardly anybody
can do. Expert systems are best suited to the type of problem between these
two extremes. The second criterion is that the task solution must be explainable
in words rather than requiring explanatory pictures. The third criterion is the
so-called telephone test. If the problem can be solved within an hour through
a telephone conversation to an expert then the problem suits the expert system
strategy. However if the problem takes a human more than a few days then it is
far too complicated to be addressed by an expert system. Also, problems inviting
one solution of many possible solutions are good candidates.

Types of decisions to be made by the quality optimiser and the types of
advice it provides the software engineer suit the expert systems approach for
reasons outlined above. For instance the quality optimiser advises which desk-
top publishing package to employ on a project to minimise the learning curve and
maximise both productivity and the quality of the documenters’ output. It advises
on the optimum frequency of progress meetings to minimise staff disruption and
maximise communication among developers on the project.

We have divided the functional specification of the quality optimiser into
several parts. The optimiser incorporates or subsumes the existing intelligent
products in software engineering. The quality optimiser is concerned with support
for software design, indicating design approaches which would lead to highest
quality. A second major functional area is concerned with a selection of factors in
the development environment. These factors include election of prototypes, choice
of test tools, team organisation, management strategies and other factors which
are known to effect cost, productivity and quality [15]. The speciality of staff
on a project as well as their numbers affect the quality of deliverable items. The
quality optimiser concerns itself with recommending numbers of systems analysts,
analyst programmers, application programmers, systems programmers, technical
authors, planning specialists, training specialists, implementation specialists, ad-
ministrative support staff and others.

In the development environment the quality optimiser advises on the use
of project management tool, quality management tool, configuration manage-
ment tool, requirement specification workbench, design workbench, programming
support environment, verification and validation tools, methodologies, graphic
support, electronic mail, fourth generation languages, word processing, text pro-
cessing, desk top publishing, implementation tools and others. The types of
management strategy that are known to affect quality include the use of chief
programmer teams, frequency and intensity of overtime working by the staff, the
frequency and composition of progress meetings, whether the project manage-
ment has an open door policy and so on. Among the deliverable items that are
assessed for quality by the developers and users are the following: functional
specification document, the project plan, quality management plan, acceptance
test specification, the system models, system design specification, detail design
documents, coded modules, tested modules, integrated subsystems, integrated

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 831

systems, the deliverable complete system, testing schedules, the user document-
ation for maintainers and for end users, the user training schedule, the system
conversion schedule, the cut-over plan and others, see Table 1.

Reuse anticipation and Exploitation The quality optimiser has several further
functional components. One of these is concerned with reuse and reverse engin-
eering [8]. The growing importance of reuse in software engineering has special
relevance to the demands made on safety critical systems [18]. All software en-
gineers need to consider the concepts of reuse in relation to any of the deliverable
items. The quality optimiser incorporates two reuse advisers. Reuse advice is
of value to the software engineer when new software is being developed from
scratch, in anticipation of future reuse possibilities. The software engineer makes
decisions about design and system structure which are affected by the future reuse
strategy. If the software and associated deliverable items are intended only for
this particular client and this particular system environment then the developer
will make design decisions accordingly. If however, the developer foresees a future
possibility of reuse, then the design decisions are different, the structure is more
generic. The developers can choose to build general purpose software components
and generalised deliverable items such as plans, schedules, test harnesses. The
reuse adviser is therefore useful before any reuse is being employed to advise on
the desirability, costs and benefits of allowing for the future possibility of reuse.

In the future years, software engineers will find themselves in more and more
projects where instead of developing software from scratch they will have access
to a library of reusable components. Not only software but other deliverable
items can also be stored in libraries for future reuse. When confronted by a new
functional requirement, the software engineer needs to make a decision on which
components to reuse and how much tailoring and adaptation they may need. He
needs to develop a reuse exploitation strategy based on the costs and benefits of
developing the item from scratch or reusing existing material. The reuse adviser
is a valuable assistant in this type of decision making. This reuse advice takes
place after the libraries of reusable components have been built up.

These two aspects of reuse advice, anticipation and exploitation, will become
more important during the 1990s as libraries of reusable components grow and
are shared among the community of software engineers. As reuse grows then the
quality perspectives of Table 1 will change. For instance the quality of coded
modules and integrated subsystems will become very relevant as potential future
marketable items.

Another component of the quality optimiser is a model of the type exemplified
by Qualcomo [25]). The adviser predicts quality using deterministic and probabil-
istic algorithms in the same way that COCOMO [15] predicts project costs. The
COCOMO and Qualcomo models were developed from empirical data and did not
use expert system techniques. They have proved valuable in software engineering
and the results can be readily integrated with the heuristic features of the quality
optimiser.

The quality optimiser advises on electing to build a prototype, or prototypes,
of all or part of the system under development. Prototypes can help in clarifying
user requirements and in exploring design approaches. Their drawback is their

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

832 Software Quality Management

time and cost of production. Reconciling these costs and benefits is difficult and
affected by parameters some of which are unique to each project. Assistance from
a quality oriented expert system could be invaluable in this area.

The functionality of the quality optimiser demands an integrated approach
which incorporates the relevance to quality of the factors mentioned above. The
perspectives of the different people assessing quality, that is to say the users, the
user management, the developers and the developer management, are all different.
The quality optimiser must encompass these differences in its handling of quality
decisions and since the perspectives are interdependent the optimiser integrates
their treatment. Table 1 illustrates the matrix of perspective weightings applicable
to the deliverable items of a typical software project. The managers, accountants
and marketeers of the developer organisation have the most obtuse views of the
quality of deliverable items. They are nonetheless important so the quality
optimiser takes them into account. The accountants, sales people, personnel
staff have interests concerned with profits, marketability of the product and staff
satisfaction which impose unusual parameters on the quality. For example sales
personnel like to see sales-oriented documentation, literature that is persuasive as
well as informative. Maintenance engineers and operational staff prefer pessimistic
reports of the worst that might go wrong with the system so they can prepare for
all eventualities. These perspectives will vary from project to project and from
organisation to organisation and demand the heuristic treatment affordable from
an expert system.

RISK
ANALYSER

USER

USER
INTERFACE

DESIGN
ASSISTANT

Nk

QUALITY
OPTIMISER

PERSONNEL
DESIGNATOR,

REUSE
ANTICIPATOR,

PROTOTYPE
ELECTOR

ENVIRONMENT QUALITY

MANAGER

Figure 2: Function Structure of the Quality Optimiser

The way in which the different areas of functionality required of the quality
optimiser should be integrated depends on the design approach. We have es-
tablished that it combines expert system technology with a knowledge base and
an inference engine. It also embodies straightforward mathematical modelling
with probabilistic functions to predict cost and quality. The knowledge base is

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 833

drawn from the experience of software engineers, quality managers and software
project managers. The models are derived from empirical observations on past
software projects. The quality optimiser is a large undertaking and will evolve as
experience is gained in the areas of reuse and risk management. Figure 2 shows
the functional structure of the quality optimiser. Experiments with component
prototypes are providing useful results.

CONCLUSION

In the fifth decade of software engineering the symptoms of the software crisis are
still prevalent. The skills and technologies for software development have improved
but at the same time the improvement has been counteracted. The relative costs of
software compared to hardware have escalated and the demands of safety critical
systems have increased. The combined effect has put more emphasis on quality
in all aspects of the professional work of the software engineer.

Perspectives of quality derive from the developers and from the users of
software systems and are multidimensional. Many deliverable items, along with
the final working code, are assessed for quality. We contend that a holistic
approach to quality management is justified. The strategy of quality management
should integrate its treatment of different perspectives and of different deliverable
items.

The interaction of artificial intelligence, especially expert systems, with soft-
ware engineering has proved synergetic in many areas and we believe that many
problems of quality management can be attacked using expert system methods.
These methods can be combined with conventional mathematical modelling to
build a holistic quality optimiser which assists the quality manager in some of his,
or her, most difficult decisions.

We have devised a quality optimiser whose functional components include :- a
design assistant, a reuse anticipator, a reuse exploiter, a personnel designator , a
development environment advisor, a risk analyser, a prototype elector, a quality
predictor and a user interface. Qur experiments with prototype components of
the quality optimiser are providing valuable results and we expect the prototypes
to evolve and coalesce as we gather more expertise into the knowledge base and
integrate existing management aids.

REFERENCES

1. Pressman, R.S. Software Engineering: A Practitioner’s Approach Mcgraw Hill,
Singapore, 1987.

2. Basili, V. and Musa, J. * The Future Engineering of Software: A Management
Prospective’ IEEE Computer, Vol. 24, pp. 90-96, 1991.

3. Brooks jr, F.P. ¢ No Silver Bullet’ JEEE Computer, Vol. 20, pp. 10-19, 1987.
4. Gladden, G.R. * Stop The Life Cycle, I Want To Get Off’ ACM SIGSOFT,
Vol.7, pp. 35-39, 1982.

5. Balzer, R. and Musa, J. ¢ A 15-year prospective On Automatic Programming’
IEEE Transaction On Software Engineering, Vol. 11, pp. 1257-1267, 1985.

6. Schach,S.R. ¢ Software Engineering °, Chapter 3, Software Life Cycle Models,
Vol. 1, pp. 43-67, Aksen Associates, Boston, 1990.

@% Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

834 Software Quality Management

7. Boehm, B.W. ¢ A Spiral Model of Software Development and Enhancement’
ACM SIGSOFT Software Engineering Notes, Vol. 11, pp. 22-42, 1986.

8. Hodgson, R. ¢ The X Model: A Process Model for Object-Oriented Software
Development ’°, pp. 1-37, Proceedings of 4th Int. Conf. on Software Engineering
and its Applications, Toulouse, France, 1991.

9. Shaw, M. ¢ Prospect for an Engineering Discipline of Software’ IEEE Software,
Vol. 16, pp. 15-24, 1990.

10. Sharp, H.C. * KDA: A Tool for Algorithmic Design Evaluation and Refinement
Using the Blackboard Model of Control’, pp. 407-416, Proceedings of Int. Conf.
on Software Engineering , Singapore, Singapore, 1988.

11. Balzer, R., Cheatham, T.E. and Green, C. ¢ Software Technology in The
1990’s: Using a New Paradigm’ IEEE Computer, Vol. 16, pp. 39-45, 1983.

12. Rine, D. ¢ Software Perfective Maintenance: By Retrain-able Software
Accepted for publishing in 1992.

13. Chen, M., Nunamaker, J. and Weber, E. * Computer Software Engineering:
Present Status and Future Directions * Data Base, Vol. 20, pp. 7, 1989.

14. Jones, C. ¢ CASE’s Missing Elements * IEEE Spectrum, Vol. 29, pp. 38-41,
1992.

15. Garratt, P. ¢ MULTIPLAN, a 'What if’ Planning Tool for Software Devel-
opment ’, Proceedings of the IEE Conf. on Management Technology, Nicosia,
Cyprus, 1990.

16. Flatman, A. and Russell, B. The Evolution of Corporate Network Infrastruc-
tures Through the 1990°s ICL, Bracknell, 1990.

17. Mandell, S.L. Computers and Information Processing West Publishing, St.
Paul, 1992.

18. Bennet, P. ¢ Software for Computers in the Application of Industrial Safety-
Related Systems ’, Proceedings of Safety-Critical Systems Club, Cambridge, UK,
1992.

19. Shepperd, M.J. and Ince, D.C. * An Empirical and Theoretical Analysis of
an Information Flow-based System Design Metrics ’, Proceedings of 2nd Furopean
Software Engineering Conf., Southampton, UK, 1989.

20. Williams, D. ‘Software Engineering Manager, Marconi Systems’, Verbal
Communication, 1990.

21. Kitchenham, B.A. and Walker, J.G. * An information Model for Software
Quality Management °, TSQM Deliverables, A24, STC Ltd., Newcastle Upon
Lyne, UK, 1988.

22. Fenton, N.E. Software Metrics: A Rigorous Approach, Chapman and Hall,
London, 1991.

23. Waterman, D.A. Introduction to Expert Systems, Oddison-Wesley Publishing
Company, Reading, Massachusetts, 1986.

24. Partridge, D. ¢ Artificial Intelligence: A Survey of Possibilities ’ Information
and Software Technology, Vol. 30, pp. 146-152, 1988.

25. Dunsmore, H.E., Conte, S.D. and Shen, V.Y. Software Engineering Metrics
and Models, Benjamin/Cummings Publishing Company, Wokingham, Reading,
and Massachusetts, 1986.

b

