
Software testing using an automatic

generator of test data

C.J. Burgess

Department of Computer Science, University of Bristol,

ABSTRACT

The automatic generation of test data has been used as a tool for the black
box testing of both compilers and electronic hardware, but only rarely has it
been applied to the testing of other types of software. This paper reviews the
the main techniques that have been employed in these generators, giving the
advantages and disadvantages of this approach, and how it might be applied
to a far wider range of software as a powerful software tool to complement
other methods of testing.

INTRODUCTION

Testing is still a major part of software development and is fairly time-
consuming. Despite the improvements in formal methods for specifying
software, which can lead to a substantial reduction in the number of re-
maining errors, it is still not possible to develop error-free software for any
reasonably sized programs. The situation is not improved by the fact that
many software systems are getting progressively larger as new and often
more complex applications are being tackled. Thus testing is likely to re-
main a very important part of software development and validation for many
years to come. Adrion[l] has published a review of software validation, in-
cluding the relative merits of both black box, i.e. functional testing, and
white box, i.e. structural testing.

There have been a number of papers published on the automatic gen-
eration of test data for software. They can be split into two main types.
The first type have concentrated on structural testing. These aim to gener-
ate the test data automatically, so as to achieve the maximum coverage of

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

542 Software Quality Management

the program code, as measured by a variety of metrics, such as the percent-
age of program paths executed at least once. The second type is based on
functional testing and uses some functional specification of the program to
guide the automatic generation of the test data. Here the aim is to produce
data which exercises every function of the program at least once, and in
many cases, exercises a variety of combinations of functions, without any
reference to the actual code of the implementation. A general review of the
automatic generation of test data for software was published by Ince[ll].

Most of the papers based on structural testing have addressed software
in general, and whilst structural testing has a certain value, it is often very
expensive in terms of computer resources and also lacks any mechanism for
the detection of the absence of any required code. In addition, although
the coverage achieved can be measured in terms of certain metrics, it is not
always clear how these metrics can then be related to the reliability of the
actual software itself.

The majority of the papers which use functional testing as their basis,
are concerned with the testing of compiler software. Other types of software
are sometimes included as part of a paper addressing compilers as the main
topic and a few papers have been published relating to other types of soft-
ware, including the testing of software simulations of VLSI circuits. This
paper concentrates on material published on the automatic generation of
test data based on functional testing, and aims to show how the techniques
used mainly for the testing of compilers and VLSI circuit simulations might
be applied to a far wider range of software.

TERMINOLOGY FOR GRAMMARS

This section is only intended for those who are unfamiliar with the repre-
sentation of grammars and their semantics.

1. Context-free Grammars

The syntax of a language can be described by a context-free grammar.
There are several ways of representing the grammar, but one of the
most common ways is by using production rules. These production
rules formally specify the order in which the basic symbols of the
language can be combined to form syntactically valid sentences in the
language. In the particular case of compiler testing, these sentences
would normally be complete test programs.

As an example, a typical part of the grammar for representing integer
numbers of any length is:-

Integer —» Integer Digit | Digit

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 543

Digit -> <0'|T|'2'|'3'|'475'|'6'|T|'8'|'9'

In these grammars, the symbols appearing on the left-hand sides of
the production rules, e.g. Integer and Digit, are called non-terminal
symbols, and the other symbols, which can only appear on the right-
hand side of production rules, are called terminal symbols. The —*
symbol indicates a production rule and separates the subject, which is
the non-terminal symbol on its' left-hand side, from its definition on
the right-hand side. The | symbol represents an alternative definition
of the subject and is a very convenient abbreviation to avoid repeating
the subject when there are a number of alternative definitions. The
grammar for a conventional programming language might have 100 to
300 production rules to cover the whole of the syntax of the language.

2. Representation of Semantic Information

There are a variety of ways of adding some semantic information to a
context-free grammar. One of the earlier and better methods that is
still used today, is by using an attribute grammar, which was first de-
scribed by Knuth[12]. He associated any number of named attributes
with any non-terminal in the grammar. These attributes were one
of two types called inherited and synthesised attributes. The type
determines the direction in which the semantic information is passed
in the syntax tree when the grammar is used to parse sentences in
the language. Synthesised attributes correspond to information that
is passed up the syntax tree and inherited attributes correspond to in-
formation that is passed down the syntax tree. Every production rule
has an associated semantic rule, which describes the semantic actions
that are associated with that rule using these attributes. Parametric
grammars, which are also referred to in some of the papers referenced,
provide similar facilities using a different notation and are described
by Camuffo[7]. Other authors use different extensions to the produc-
tion rules to cope with the semantics, which often have less expressive
power.

More details on grammars and programming language definition can
be found in many textbooks on programming language design or compiler
construction, e.g. Aho et al.[2].

GENERATION OF TEST DATA

One of the main uses for context-free grammars, besides providing a formal
description of the syntax of a language, is for the syntax analysis of a string,
to determine whether or not that string is in the language. However, the
same grammar can also be used to generate strings from a given language.
This is done by expanding any non-terminal in a string by the right-hand

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

544 Software Quality Management

side of one of the production rules, where it is defined, starting with the
single non-terminal that represents the whole language. This process is
repeated until the string produced contains only terminal symbols. This is
the basis for the algorithm used in many of the generators that are described
in the literature. The choice between the different alternative definitions to
use to expand a given non-terminal can be done either systematically, so as
to ensure that they are all used at least once, or at random, using a built-in
pseudo-random generator. Some of the generators also allow the addition
of weights to the production rules to control how frequently one alternative
definition is chosen with respect to the others.

TEST DATA FOR COMPILERS

Many of the schemes described for the automatic generation of test data for
the testing of compilers have used the syntax of the programming language
as the main basis for their functional specification. One of the earliest was by
Purdom[l5], who used the syntax specification of the language as the input,
and generated a series of tests to verify the correct construction of an LR
parser, which is a commonly used algorithm for the syntax analysis stage
of a compiler. He systematically selected the different definitions available
for a given non-terminal, when expanding a given subject, so that all the
right-hand sides of the productions rules were used at least once, and also
so that only a minimal number and length of test programs were produced.
He reported considerable success with this approach.

Several later papers have described schemes which produce test pro-
grams designed to compile successfully, but not necessarily to have a mean-
ingful execution. This means that the semantics of the test programs has
been controlled sufficiently to ensure successful compilation. For most lan-
guages, the major part of this semantics is controlling the type and use of
the identifiers. One of the earlier papers in this group was by Celentano
et al.[8], who used production rules, augmented by actions, to provide con-
trol over the semantics associated with identifiers. The actual productions
were selected using a modification of Purdom's algorithm. Bazzichi and
Spadafora[3] used a different extended form of the grammar notation and
generated two different sets of test programs. In one set, all the programs
should successfully compile, but in the other set, each program included
a syntax or a semantic error preventing successful compilation. This sec-
ond set was designed to check for the correct detection and identification of
compile-time errors.

Murali and Shyamasunder[14] used a different representation of the
grammar, called a syntax graph, which can be easily constructed from a set
of productions, as the main basis for the coding of the actual generator. The

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 545

choice between the different definitions was made at random, with weights
associated with each definition to control how frequently a given definition
should be selected. They also generated both compilable test programs and
those containing compile-time errors.

In all the previous papers, most of the test programs generated would
not execute meaningfully, and there is no attempt to check for the correct
execution. Thus the code generator section of the compiler is not properly
tested. There were two early attempts at generating test programs that
were meaningful to execute but both had severe limitations [9, 10]. The
first comprehensive scheme was described by Bird and Munoz[4], where the
generated test programs also included self-checking code to check automat-
ically for their correct execution. Their method, although applicable to
most programming languages, involved writing a specific generator for each
different language. They tested a PL/I compiler and the basic structure
of their generator was a loop which selected, at random, the next type of
source statement to be generated, and then called the appropriate subrou-
tine to generate an example of that type of source statement. The generated
source statement was followed by self-checking code to verify the correct new
values of any variables changed by any assignment statements and also to
verify that the correct flow path had been executed. The syntax and se-
mantic description of the language was used purely as a specification for
the subroutine coding and not as a direct input. They report considerable
success with their method, which they also applied to two other types of
software which will be described in the next section. They did not attempt
to generate programs with known compile-time or run-time errors and their
emphasis was on being able to generate and execute a large number of tests
with the minimum of human involvement.

A more recent paper by the author[5], describes a scheme for generat-
ing very similar test programs to Bird, using a grammar closely related to
an attribute grammar for the representation of the syntax and some of the
semantic information of the programming language. This enabled a fairly
language independent generator to be built. The actual compiler tested
was a Pascal compiler. Each of the production rules had a weight attached
and some production rules also had guards, which prevented that rule from
being used if the semantic context was incorrect. The productions to be
used at each stage were chosen at random from the weighted productions.
The resulting test programs compiled and executed, with self-checking code
to verify the correct execution. These ideas have been further extended by
the author and Saidi[6], in a generator of test programs for both normal
and optimising Fortran Compilers. The test programs generated not only
execute with self-checking code, but also include a number of features which
optimising compilers are known frequently to exploit when trying to opti-

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

546 Software Quality Management

raise the object code produced, thus testing both the code generation and
optimisation stages of the compiler.

TEST DATA FOR OTHER TYPES OF SOFTWARE

There are comparatively few papers describing the automatic generation of
data for other types of software based on functional testing. One of the
main papers is by Bird and Munoz[4], which has already been referenced.
They show how a special purpose test generator can be built, not only
for compiler testing, but also for the testing of a Graphical Data Display
Manager and a Sort/Merge Program. A key feature of these generators is
the prediction of the correct result of the test, followed by the verification
of the test either automatically, or with the minimum of user involvement.
The human involvement was unavoidable with the graphics software, since
it was necessary to check for the correct visual output on the screen. Their
work is specifically within the industrial context and they report a number
of benefits of using this type of testing when compared with conventional
testing methods.

A more recent paper is by Camuffo et al.[7], which describes the au-
tomatic generation of test data for software using a context-free parametric
grammar. The paper reports work performed in an industrial context for
the testing of arithmetic statements in a Cobol compiler; some operating
system commands for their versions of DOS and Unix; and the validation of
the communication protocols for performing file transfers. When generating
the correct tests, they also computed the expected results, but when gener-
ating tests containing errors, they did not predict the effect of the error on
the system under test.

An automatic generator of test data for testing software simulations of
VLSI circuits is described by Maurer[l3]. This uses a language called DGL,
which is based on the concept of probabilistic context-free grammars[16].
The production rules can either be selected at random, or systematically,
or some combination of the two. The generator also contains two extra
features, called variables and chains. Variables provide a mechanism which
enables the same generated sequence to appear more than once within a
given test. Chains ensure that, for a limited set of productions, all possible
combinations are generated as part of the test. An interesting feature of
their approach is that they start with a test set which is designed to execute
every path in the circuit at least one, more akin to the structural testing
of software, and then vary the test in a random way. This is to ensure
that every built-in micro-instruction is executed at least once. The user
of their generator is responsible for computing the expected results of the
tests, but there is the provision of a result field to record the expected

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 547

result. Although some of the features are designed very much with VLSI
testing in mind, the author claims that, with the use of software simulation
of VLSI circuits before fabrication, the gap between software testing and
VLSI circuit testing is narrowing. The paper reports heavy and successful
use of the generator for VLSI testing by their University Microelectronics
Research Center, but very little use as yet on other types of software.

There seems to be little other published material on the use of the
automatic generation of test data by industry based on functional testing.
This could be due to a combination of factors, such as:-.

1. The technique is not used very widely at present.

2. The technique, where it is used, is very specific to the particular type
of software under test.

3. It is not in their commercial interests to spend the time required to
publish or to advertise the detailed techniques to others.

One industrial organisation, in a private communication, described
how they have used similar techniques to some of those described, to test a
large software system, which had a rich language as an interface arid con-
tained a large number of different commands. They constructed a generator
which generated partially random data and also predicted the effect of the
data so that this could be verified when the test data was executed. The
effect of the software under test was simulated by a state transition table
to assist in the prediction of the effect of the data generated. The same
organisation has applied similar techniques to other pieces of software and
found that it was good at finding problems at the levels of unit testing
and functional verification with a single user, compared with other testing
methods.

DESIGN CRITERIA FOR AN AUTOMATIC GENERATOR

On the basis of the literature reviewed it is possible to establish a basic set
of criteria for assessing an automatic generator of test data which is based
on functional testing.

1. Coverage
There should be some measure of the testing coverage provided by the
generator. This should mean, at the minimum, that all the functions
in the specification should be used at least once, and in addition, some
combinations of functions, where the functions are not completely
independent.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

548 Software Quality Management

2. Cost
The development of the tool, if a suitable one does not already ex-
ist, and its subsequent use, should require the minimum of human in-
volvement and not require an excessive amount of computer resources.
This can be measured by comparison with the human and computer
resources required to do the equivalent testing using manually con-
structed test data.

3. Prediction of results
It should be possible to predict automatically the expected results of
the test data, either directly within the generator as the test data is
being produced, or by the use of some form of software simulation of
the system under test.

4. Checking of results
The results of the execution of the test data by the software under
test should be automatically compared with the expected results. Any
differences need to be reported with sufficient information so that both
the test and the type of failure is reproducible. This should enable a
very large number of tests to be executed with the minimum of human
involvement.

5. Number of tests
There should be some method of determining how many tests should
be generated, since most generators are capable of generating many
more different tests than needed. This probably has to be a statistical
measure of the likelihood of failure of the software being tested, based
on how many errors have been detected with a given number of tests,
or some other criteria which may be harder to relate to the reliability
of the final product.

6. Range of values used
Within the test data, for any given data item, there is likely to be a
wide range of possible values. The test data, whether automatically
generated or manually constructed, must include the following three
types of values:-
(a) Extremal values These are values which are known to be at, or

near, the ends of the range of valid input values, or input values
known to produce output values near to the end of their range.

(b) Special values These are valid input values which are known to
have special effects on the software in use. A very common ex-
ample is zero for a numerical value or its equivalent for a different
type.

(c) Non-extremal values These are the values that are not in either
of the previous two categories and correspond to the majority of
the values that are used in automatically generated tests.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 549

7. Testing error detection
A generator, as a user option, should be able to generate test data
with given types of errors and be able to predict the form of error
response that should be obtained from the software under test. There
are a number of forms these tests could take and many of them will be
very dependent upon the type of software being tested. Some fairly
general possibilities are:-

(a) Values of input data just beyond the valid range.

(b) Incorrect formats within a data field.

(c) Incorrect number or order of fields.

(d) Incorrect spellings of keywords.

(e) Common mistypings.

(f) Invalid combinations of otherwise valid data.

It is not clear how many of these can usefully be built into an auto-
matic generator, as it might be quite difficult to simulate the correct
error behaviour of the software and hence predict the error response.
However a set of these tests, without the prediction of the error re-
sponse, would also be a useful diagnostic tool.

8. Limited exhaustive testing
For some software, a useful feature would be to generate exhaustively
all the possible combinations of some group of features, within a larger
test framework. With a grammar based generator, this probably im-
plies an ability to specify either strictly sequential selection of produc-
tions, or random selection, and also to provide a linking mechanism
between related productions. The only published paper that seems to
provide such a mechanism is the one by Maurer[13].

9. Ease of use
Like most other software, a successful generator has got to be easy to
use if anyone other than its author is going to want to use it.

BUILDING A COMPLETE TEST SYSTEM

The complete test system should have four tasks.

1. The generation of the test data.

2. The prediction of the results of the test data.

3. The actual execution of the tests by the software under test.

4. The comparison of the predicted and actual results of the tests.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

550 Software Quality Management

The design and implementation of these tasks will depend both on
the type of software being tested and the method used to predict the test
results, if this is possible. There are at least five basic approaches.

1. Design the generator so that it predicts the expected results of the test
data whilst the data is being generated, and generates self-checking
data at the same time. This method has been used for compiler testing
[4, 5, 6], but it is only likely to be applicable for a limited range of
software, where the provision of self-checking data is feasible.

2. Design the generator so that it predicts the results, as for 1 above, but
instead of generating self-checking tests, the results of the execution
of the test data is compared with the predicted effect, either manually,
or preferably by an automatic comparison program.

3. When the required test data is such that its effect cannot be pre-
dicted during its generation, then the test data is applied to both
the software being tested, and a software simulation of the software,
and their results compared, once again, preferably automatically. The
software simulation only has to simulate those parts of the software
being tested, and unless the software is time-dependent, it need not be
particularly efficient. One possibility would be to use an executable
formal specification of the software to provide the simulation, but this
probably requires more research and development into executable for-
mal specifications.

The next two designs are less desirable, but are still worthwhile.

4. When the test data is being generated, provide a special field so that
the user can fill in the expected result. This method has been used in
the testing of software simulations of VLSI circuits[13].

5. When there are two different versions of the software, both expected to
achieve the same results, then useful results can be obtained without
prediction, by comparing the results of the two versions with the same
test data. This is really closely related to case 3 above. This has been
used for compiler testing, but would also seem to be a viable way
of testing new versions of software against previous versions, where
only new features or corrected bugs should cause any differences in
the results produced by the test data.

DESIGNING THE GENERATOR

The first major decision is which of the following approaches to adopt for
the design of the generator.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 551

1. Special purpose
A generator is designed specifically for the piece of software being
tested. All aspects of the syntax and the semantics of the test pro-
grams are hand-coded into the generator. The process is repeated for
each new piece of software. This method was adopted by Bird[4], and
when allowing for the cost of large software, this is not necessarily
a bad approach, if it makes the construction of the generator a lot
easier.

2. General purpose
The generator is designed as a more general purpose piece of soft-
ware and uses a representation of the grammar, or some other formal
specification, as one of its main inputs. The generator then either
actually produces the test data directly, or generates as output, the
code of a special purpose generator similar to the previous case. This
is the most common approach adopted by the testers of compilers,
as the input required has a fairly complex grammatical structure and
the grammar of the appropriate language is already available. This
approach has also been used for the testing of simulations of VLSI
circuits and some other pieces of software [7, 13].

The next fundamental decision is whether to include the prediction
of the results of the test data, and if so, how this is to be implemented.
Although obviously desirable, the difficulty of doing this will be very de-
pendent upon the type of software under test. The two main options are:

1. Build the prediction mechanism into the generator itself. If the gen-
erator is a special purpose one anyway, then this involves just ex-
tending the code. If the generator is more general purpose, then the
same philosophy can be extended by the use of a grammar allowing
some semantic information to be expressed, such as an attribute or
parametric grammar. It is still unlikely that all the information can
be easily expressed formally but some mechanism of calling specially
coded subroutines would allow for the inclusion of those features that
cannot be expressed in any other way.

2. Use the generator to produce only the syntax of the tests, and write
a software simulation of the software under test to predict the results,
with just sufficient complexity to cope with the area being tested.
This would seem a good approach where the cost of writing such a
simulator is comparatively small, or where the result of any particular
test is not completely independent but depends on the current state
of the test software. These states may possibly be simulated using
a state transition table in the software simulation or by some other
technique.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

552 Software Quality Management

The third decision concerns the checking process and whether this can
be automated. This will obviously reduce the human involvement if there
are a very large number of tests, and may be feasible for a variety of software
when the test data generated can be executed directly by the software under
test.

In addition, there are a number of fairly independent decisions.

1. Should the automation extend to the generation of incorrect data and
the prediction of the correct error response from the software under
test? This will probably make it harder to always predict the results
accurately, and to automate the checking of the results.

2. Should the generated data be restricted to non-extremal values? If
not, are the extremal and special values obvious or easily calculated?
Is it possible to deduce these from either an informal or formal speci-
fication of the software?

3. Are there some parts of the possible test data spectrum that require
exhaustive testing and not just random selection?

THE TYPES OF SUITABLE SOFTWARE

The approach described in this paper is likely to be more suitable for some
types of software than others. The following are some characteristics, which
either individually or together, could be used to identify suitable software.

1. The input for the software is a fairly rich language, with a well-defined
syntax.

2. There is a fairly formal way of predicting the expected results of any
piece of test data or it is easy to construct a simulation of the software
under test.

3. The different parts of a sample data set are not completely indepen-
dent and a large number of different combinations are possible.

e.g. a command language where the effect of any particular command
is dependent upon the previous commands.

4. By the nature of the application, the software is quite complex and
therefore the normal testing process would be quite complex and in-
volve a large number of tests.

5. It is very important that the software should have a high reliability.

There are other characteristics of software that might make it difficult
or inappropriate to apply this approach. Some of these might be :-

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 553

1. Software that requires a large amount of interaction with the user.
This could cause problems but even this can sometimes be overcome
as illustrated by the testing of the Graphical Data Display Manager,
described by Bird [4].

2. There is a severe limit on the time and resources available for testing.

3. The software is comparatively simple, with typically very small data
sets that are completely independent of one another.

ADVANTAGES AND DISADVANTAGES OF THE APPROACH

The main advantages of the approach are:-

1. It is easy, once the test system has been constructed, to generate a
very large number of tests. If the prediction and the checking of the
results are fully automated, this should enable a large number of tests
to be carried out in a comparatively short time compared with other
testing techniques.

2. It is very good at producing a large number of different combinations,
either within one set of test data or between sets. This should provide
a good test where different parts of the test data interact with one
another.

3. Since, at the heart of the generator, there is most likely a pseudo-
random number generator, then there is a random element within the
selection of the test data. There is evidence from the literature that
this helps to produce more effective testing, e.g.[11]. In addition, by
recording the seeds used to start the random number generator, any
set of test data need not be stored, but can be reproduced at a later
date, if required.

4. The production and use of the generator can be more enjoyable and
rewarding for the person doing the testing , than having to use a large
number of manually constructed test cases.

5. There is evidence from the published literature that where this method
has been employed, they have been pleased with the results.

The main problems or disadvantages with the approach are:-

1. There is no obvious method of knowing how much data to generate.
The only possible help is if a statistical record is built into the system,
to record the number of tests, and the number and types of failure
detected. This provides the possibility of some measure of reliability
as a guide to how much more testing is required. This situation is no
worse than that which occurs when using manually constructed test
data.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

554 Software Quality Management

2. For some software, it is important to be able to have detected errors
corrected as quickly as possible, as one error may cause a large per-
centage of the failures and cause other errors to be obscured. For the
same reason, until the software is fairly robust, it will probably not
be worthwhile generating a very large number of tests.

3. It is not clear how best to generate incorrect data and predict error
responses.

4. Very few systems have a mechanism built in to allow for the testing
of extremal and special values, leaving the testing of these cases to
hand-coded tests.

FUTURE WORK

There are no generators known to the author that meet all the design
criteria proposed, even for a limited range of software, e.g. compilers, but
most of the criteria are met by at least one system, and most of the systems
described meet many of them. Thus there are a number of open research
questions still to be resolved.

1. Can one design a suitable language for an automatic generator which
is both easy to use and meets many or all the proposed design criteria?

2. Should there be different generators for each particular type of soft-
ware or can one scheme be designed that is flexible and adaptable
enough to be tailored towards a particular piece of software?

3. With the slowly increasing use of formal methods for functional spec-
ification, can these be used to help in either the generating of the test
data, or, by the simulation of the formal specification, the production
of the predicted results for a given set of test data?

4. Is there a useful systematic method of producing incorrect data for
testing error responses of software?

5. What is the right balance between hand-coded tests and automatically
generated tests for a given piece of software?

SUMMARY

This paper has reviewed the main techniques that have been used in the
construction of automatic generators of test data for compilers and some
other types of software, based on functional testing. It then gave some of the
desired characteristics that such a generator should have and shown possible
ways in which a test system could be generated which would be applicable to
a wide range of software. It also identified those characteristics that software

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

Software Quality Management 555

might have that was suitable for this type of testing. Finally it summarised
the advantages and disadvantages of this approach as a complement to other

methods for the testing of software.

REFERENCES

1. Adrion,W.R., Branstad,M.A. and Cherniavsky,J.C. 'Validation, Veri-
fication and testing of Computer Software', Computing Surveys, Vol.
14, No. 1, pp. 159-192, 1982.

2. Aho,A.V., Sethi,R. and Ullman,J.D. 'Compilers - Principles, Tech-
niques, and Tools', Addison-Wesley, 1986.

3. Bazzichi,F. and Spadafora,!. 'An automatic generator for compiler test-
ing', IEEE transactions on Software Engineering, Vol. SE-8, pp. 343-
353, 1982.

4. Bird,D.L. and Munoz,C.U. 'Automatic generation of random self-
checking test cases', IBM Systems Journal, Vol. 22, pp. 229-245, 1983.

5. Burgess,C.J. 'Towards the automatic generation of executable pro-
grams to test a Pascal compiler', Software Engineering '86, Ed.
D.Barnes and P.Brown, IEE Computing Series Vol. 6, Peter Peregrinus

Ltd., pp. 304-316, 1986.

6. Burgess,C.J. and Saidi,M. 'The Automatic Generation of Test Pro-
grams for Normal and Optimising Fortran Compilers', Department of
Computer Science Technical Report, No. CSTR-92-18, University of
Bristol, 1992.

7. Camuffo,M., Maiocchi,M. and Morselli,M. 'Automatic software test
generation', Information and Software Technology, Vol. 32, No. 5, pp.
337-346, 1990.

8. Celentano,A., Crespi-Reghizzo,S., Delia-Vigna,P. and Ghezzi,C. 'Com-
piler testing using a sentence generator', Software Practice and Expe-
rience, Vol. 10, pp. 897-918, 1980.

9. Hanford,K.V. 'Automatic generation of test cases', IBM Systems Jour-
nal, Vol. 9, pp. 242-257, 1970.

10. Houssais,B. 'Verification of an Algol68 implementation', ACM Sigplan
Notices, Vol. 12, pp. 117-128, 1977.

11. Ince,D.C. 'The Automatic Generation of Test Data', Computer Jour-
nal, Vol. 30, No. 1, pp. 63-69, 1987.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

556 Software Quality Management

12. Knuth, D.E. 'Semantics of Context-Free Languages', Mathematical
Systems Theory, Vol. 2, No. 2, pp. 127-145, 1968.

13. Maurer,P.M. 'The Design and Implementation of a Grammar-based
Data Generator', Software Practice and Experience, Vol. 22, No. 3, pp.
223-244, 1992.

14. Murali,V. and Shyamasunder,R.K. 'A sentence generator for a compiler
for PT, a Pascal subset', Software Practice and Experience, Vol. 13,
pp. 857-869, 1983.

15. Purdom,P 'A sentence generator for testing parsers', BIT, Vol. 12, pp.
366-375, 1972.

16. Wetherell,C.S. 'Probabilistic Languages: A Review and some Open
Questions', ACM Computing Surveys, Vol. 12, pp. 361-379, 1980.

 Transactions on Information and Communications Technologies vol 4, © 1993 WIT Press, www.witpress.com, ISSN 1743-3517

