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Abstract

This paper is concerned with a novel algorithm for a solution to contact problems
stemming from the TFETI (Total Finite Element Tearing and Interconnecting)
domain decomposition method. The TFETI method is based on the idea that
the compatibility between non-overlapping sub-domains, into which the original
domain is partitioned, is enforced by the Lagrange multipliers. The distinctive
feature of the TFETI consists of the fact that the method also enforces the Dirichlet
boundary conditions by means of the Lagrange multipliers. The TFETI based
technique converts the original contact problem to the quadratic programming one
with the equalities and simple bound constraints. Moreover, it also results in more
efficient preconditioning by an enriched natural coarse grid defined by a priory
known kernels of the stiffness matrices. Our new algorithm exhibits both parallel
and numerical scalabilities so that it enables us to effectively solve steady-state
problems of deformable bodies undergoing contact, geometric and material non-
linear effects. In this paper we propose an algorithm with nested iteration strategy,
where its inner part consists of a new version of our previously developed MPRGP
and SMALBE algorithms and the outer loop iterates on the geometric and material
non-linearities. Numerical experiments include solutions to steady-state problems
with non-linear effects and their results document that the proposed algorithms are
robust, highly accurate and exhibit both parallel and numerical scalabilities.
Keywords: contact non-linearity, geometric non-linearity, material non-linearity,
domain decomposition, scalability.
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1 Introduction

Dostál et al. analysed in [1] problem of frictionless contact problem between
solid bodies, while they considered both geometrically and materially linear
cases. Therein they suggested a new in a sense optimal version of their own
previously developed algorithm based on TFETI (Total Finite Element Tearing
and Interconnecting) domain decomposition method. The goal of this paper is to
apply this new algorithm to the contact problems accompanied by both geometric
and material non-linear phenomena, and to show that it can yield, even under these
conditions, good results.

The FETI domain decomposition method was introduced by Farhat and Roux
[2] as a parallel finite element solver for the self-adjoint elliptic partial differential
equations. Its key idea is a decomposition of the spatial domain into non-
overlapping sub-domains that are ‘glued’ by Lagrange multipliers, so that, after
eliminating the primal variables, or displacements, the original problem is reduced
to a small, relatively well conditioned, typically equality constrained quadratic
programming problem that is to be solved iteratively. Later Farhat et al. modified
the basic FETI algorithm so that they were able to prove its numerical scalability,
i.e. asymptotically linear complexity.

The partition of the original domain into sub-domains usually generates some
‘floating’ sub-domains with not enough prescribed displacements, so that their
stiffness matrices are singular in steady-state cases and implementation of FETI
then includes the computation of their kernels. However, stable evaluation of the
bases of the kernels, though theoretically clear in exact arithmetic context, is tricky
in the presence of the round-off errors. To overcome this difficulty, Dostál et al. [4]
suggested enforcement of all the Dirichlet boundary conditions by the Lagrange
multipliers so that all the sub-domains were treated as totally unconstrained. This
version of FETI is referred to as the Total FETI (TFETI). Since the kernels of
stiffness matrices of all the sub-domains are the same and known beforehand, this
approach removed the problems with identification of these kernels.

Even though the FETI class methods were originally developed for numerical
solution to linear elliptic partial differential equations, it turned out that they
were even more successful for the solution to contact problems. The reason is
that any FETI method reduces in effect for free the more general inequalities
introducing the conditions of non-penetration of bodies to the bound constraints.
The FETI based algorithm for contact problems was proposed by Dostál et al. in
[5]. The numerical scalability of this algorithm was demonstrated by numerical
experiments.

The organisation of the paper is as follows. Section 2 introduces the TFETI for
contact problems. Section 3 is briefly concerned with a new version of SMALBE
and MPRGP, which are the algorithms stemming from the TFETI. The concepts of
numerical and parallel scalabilities are explained in Section 4. Section 5 outlines
the overall computational strategy and we present there an algorithm that enables
TFETI to be applied to solution to the contact, geometric and material non-linear
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effects. Section 6 shows results of numerical experiments and Section 7 concludes
the paper.

2 Problem formulation

For simplicity, let us consider a system of two solid deformable bodies in contact
which occupy in reference configuration domain Ω = Ωm ∪ Ωs, where m
denotes master body and s stands for slave body. Assume that their boundaries
are subdivided into three disjoint parts Γi

u, Γi
f , and Γi

c, i = m, s, with prescribed
Dirichlet, Neumann, and potential contact conditions, respectively.

The strong version of governing equations of the static equilibrium is as follows

σij(u),j = fi in Ω, (1)

where σ, u, and f denote stress tensor, displacement vector and loading vector,
respectively. The Dirichlet and Neumann boundary conditions are, respectively, as
reads

u = 0 on Γu, (2)

σij(u · νj)u = pi on Γf . (3)

There are several conditions characterising the contact. Consider the frictionless
contact. The first is the kinematic contact condition which says that solids cannot
penetrate each other so that the gap g between them is either zero or positive

g ≥ 0 on Γc. (4)

The second one is the mechanical contact condition which postulates that solids
cannot pull on each other in the absence of adhesion so that only compressive
normal stresses σν are allowed

σν ≤ 0 on Γc. (5)

The complementarity or exclusivity conditions asserts that solids press on each
other or they are separated

σν · g = 0 on Γc. (6)

The variational formulation is to be obtained if we consider the constrained
minimisation problem

u ∈ K, J (u) ≤ J (v) ∀v ∈ K, (7)

where K is a non-empty, closed, convex set of all feasible displacements. The
quadratic functional

J (v) =
1
2
a(v,v) − �(v) (8)
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is generated by a self-adjoint, positive definite bilinear form

a(v,w) =
∑

i∈{s,m}

∫
Ωi

σ(vi) : ε(wi)dx (9)

and accounts for internal forces. The linear functional

�(v) =
∑

i∈{s,m}

∫
Ωi

f · vdx +
∑

i∈{s,m}

∫ f

Γi

p · vdx (10)

accounts for the volumetric forces and tractions on the Neumann boundary.
To apply the TFETI domain decomposition, we tear each body from the part of

the boundary with the prescribed Dirichlet boundary conditions, decompose each
body into sub-domains and introduce new connecting conditions on the fictitious
intersubdomain boundaries and on boundaries with imposed Dirichlet conditions.
The connecting conditions requires continuity of the displacements and of their
normal derivatives across the intersubdomain boundaries.

Applying the standard finite element procedures while in addition considering
TFETI method, we can express the governing equations of a contact problem in
discretised form as follows

Ku = f −B�
I λI −B�

EλE , (11a)

BIu ≤ cI , (11b)

BEu = cE , (11c)

where K denotes a stiffness matrix with sparse positive semidefinite diagonal
blocks corresponding to individual sub-domains. In accordance with the TFETI
method, the kernels of all the sub-domains are the same and known beforehand.
The matrix BI and the vector cI introduce the linearised non-interpenetration
conditions. Similarly the matrix BE and the vector cE enforce the prescribed
displacements along the part of the boundary with the Dirichlet conditions. λI

and λE stand for the components of the vector of Lagrangean multipliers, while
we shall use

λ =

[
λI

λE

]
, B =

[
BI

BE

]
and c =

[
cI

cE

]
.

Eqn. (11a) has a solution iff f −B�λ belongs to the range of K and therefore
the following relationship holds

R�(f −B� λ) = 0, (12)

where R denotes the full rank matrix with columns spanning the kernel of K. Since
all the sub-domains are totally unconstrained, the kernels of the sub-domains are
known beforehand and are to be assembled directly.
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It is necessary to eliminate the primal variable u from eqn. (11a). It can easily
be verified that if u is a solution to eqn. (11a), then there exists such a vector α
that

u = K†(f −B
�

λ) + Rα, (13)

where K† is any symmetric positive definite matrix satisfying the first Moore–
Penrose condition KK†K = K, or it is the {1}-inverse.

Substituting eqn. (13) into eqn. (11a), we get the following minimisation
problem

min
1
2

λ�BK† B
�

λ−λ�BK†f s. t. λI ≥ 0 and R�(f −B
�

λ) = 0.

(14)
Let us now introduce the standard FETI notations

F = BK†B�, G = R�B�, e = R�f , d = BK†f . (15)

After some algebraic manipulation, we obtain the following formulation

min
1
2

λ�PFPλ− λ�Pd s. t. λI ≥ 0 and Gλ = 0, (16)

where
P = I−Q and Q = G�(GG�)−1G (17)

stand for the orthogonal projectors on the kernel of G and the range of G�,
respectively. The point of the last step is to introduce preconditioning by the natural
coarse grid projector.

The problem (16) is to be solved efficiently by the algorithms presented in the
following section.

3 MPRGP and SMALBE algorithms

We have shown that application of the TFETI methodology to the contact
problems converts the original problem to the quadratic programming problem
with bound and equality constraints and well-conditioned regular part of the
Hessian matrix. Such problems are to be solved very efficiently by the recently
proposed algorithms. A unique and qualitatively new feature of these algorithms
is the rate of convergence in the bounds on the regular part of the Hessian,
independent of the representation of constraints. See [1] for details.

The problem (16) is first reduced by Semi-Monotonic Augmented Lagrangeans
with Bound and Equality constraints (SMALBE) method to the sequence of
bound constrained quadratic programming problems. SMALBE accepts inexact
solutions of auxiliary bound constrained problems solved approximately in the
inner loop until the norm of the projected gradient is proportional to the feasibility
error, and updates the regularisation parameter until the value of the Lagrangian
increases. These auxiliary problems are to be solved efficiently by the Modified
Proportioning with Reduced Gradient Projection (MPRGP) method in the inner
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loop. It was proved by Dostál and Horák [6] that application of FETI or TFETI
with natural coarse grid preconditioning to a contact problem can be combined
with SMALBE and MPRGP to obtain algorithm with asymptotically linear, i.e.
optimal, complexity. A unique feature of MPRGP is the rate of convergence which
is independent of the inequality constraints. Moreover, the algorithm enjoys the
finite termination property even for dual degenerate problems, so that it does not
suffer from oscillations often attributed to this type of algorithms.

Detailed description of these algorithms is beyond the scope of this paper.

4 Numerical and parallel scalabilities

The performance of a domain decomposition based iterative method depends
on two important properties, namely numerical and parallel scalabilities. Such a
method is said to be numerically scalable if the condition number of the problem
does not grow or grows weakly with the ratio of the sub-domain size and the mesh
size. The parallel scalability represents ability of an algorithm to achieve larger
speed-ups for a larger number of processes.

5 Non-linear algorithm

The primary interest of this work is the development of effective strategy for fully
non-linear problems, where, in addition to the contact interaction, the kinematics
of the body system are not confined to small strains, and where the material
response is potentially non-linear and inelastic.

The strains can be evaluated by means of the following in general non-linear
relationship

ε = Bs(u) · u, (18)

where Bs denotes an appropriate matrix relating strains with nodal displacements.
The stresses are computed by solving this constitutive equation

σ =
∑

nelem

ε∫
0

Ddε, (19)

where D stands for the tangent material matrix. Its particular form depends on
applied material model. We sum over nelem elements.

The MPRGP and SMALBE algorithms are directly applicable to solution to the
contact problem, which itself is a strongly non-linear phenomenon indeed, but with
other conditions linear. Any additional non-linear effect necessitates employment
of the nested iteration strategy, where the inner loop is concerned with TFETI
based solver, while the outer loop iterates on the material/geometric non-linear
effects and contact geometry update so that it might achieve equilibrium.

Consider the state of equilibrium of the system. Employing the modified
Newton–Raphson iterative method, the governing equilibrium equations is as
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follows
K(i−1) ∆u(i) = fext − f (i−1)int . (20)

K, fext and fint denote the stiffness matrix, the vector of external nodal loading,
and vector of internal nodal forces, respectively. The right superscript (i) stands
for the current number of iteration. ∆u(i) denotes the displacement increment at
each iteration, while the total displacement is updated as follows

u(i) = u(i−1) + ∆u(i). (21)

Then we can in turn compute the strain tensor, stress tensor and internal forces
as reads

ε(i) = Bs

(
u(i)

)
u(i), (22a)

σ(i) =
∑

nelem

ε(i)∫
0

Ddε, (22b)

f (i)int =
∑

nelem

∫
Ω(i)

Bs
�(u(i)) σ(ε(i)) dΩ(i). (22c)

Equations (20) to (22) describe the problem in terms of the primal variables,
i.e. displacements. The stiffness matrix and RHS vector of eqn. (20) have to be
transformed in the sense of Section 2 in order that the problem might be computed
by MPRGP/SMALBE algorithms for the Lagrangian multipliers. Then we can
return to the primary variables, i.e. the displacement increments.

The simplified solution algorithm is shown in the following flowchart.

Initial step: Assemble stiffness matrix K and BE ;
Set i = 0, u0 = 0, f0int = 0;

Step 1: Evaluate contact conditions B(i)I ;
Step 2: Solve contact problem by MPRGP/SMALBE for λ→ ∆u,

u(i) = u(i−1) + ∆u.
Step 3: Compute the strain tensor ε(i) and stress tensor σ(i).
Step 4: Integrate the equivalent internal forces f (i)int.

Step 5: Assemble the residual load vector res(i) = f (i)int − fext;

check on convergence criteria ‖∆u‖
‖u(i)‖ < η1 , ‖res(i)‖

‖fext‖ < η2;
If fulfilled then STOP,
otherwise set i← i + 1 and go to Step 1.

6 Numerical experiments

This section presents results of two sets of numerical experiments with the
proposed algorithms. The first one is concerned with analysis of a bolt and nut
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F (a) (b)
Figure 1: Bolt & nut problem; (a) schematic sketch, (b) mesh.

contact problem and the second one shows results concerning the numerical and
parallel scalabilities. All the numerical experiments were carried out with our in-
house general purpose finite element package PMD (Package for Machine Design)
[7].

6.1 Bolt and nut contact problem

Consider a bolt and nut of 30 mm diameter and the metric thread. The nut rests
on a washer and the bolt is loaded by a force F according to fig. 1(a). The
problem is semi-coercive in the sense that we did not prescribe any constraints
for the bolt in the direction of its axis. The motion of the bolt is restricted
only by the surfaces in contact. Fig. 1(b) shows the finite element mesh, which
was strictly created in accordance with the corresponding technical standard,
apart from the thread that is not in form of the helix but rings. The problem is
modelled with linear penta/hexahedra and we modelled only one quarter because
of the symmetry. Numbers of primal and dual variables are 95052 and 1296,
respectively, for the case with decomposition into two sub-domains. We consider
both the geometric and material non-linear effects. The material properties for
linearly–elastic–perfectly–plastic material model are as follows: Young’s modulus
E = 2.1× 1011 Pa, Poisson’s ratio ν = 0.3 and yield stress σY = 250MPa. We
used the von Mises yield criterion.

Fig. 2 shows distribution of von Mises stresses for three levels of loading. The
first column depicts results for load F = 3.8kN , the second one for F = 11.3kN ,
and the third one for F = 22.6kN . The upper row represents results with applied
elastic material model and the lower one with the plastic model.
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Figure 2: Von Mises stress distribution.

6.2 Numerical and parallel scalabilities

Consider contact of two identical elastic cubes of size a = 10 mm and of the
following material properties: Young’s modulus E = 2.1× 1011 Pa and Poisson’s
ratio ν = 0.3. The computational model is discretised by tri-linear cubical
elements and decomposed into cubical sub-domains, while their ratio H

h = 10.
Considering parallel treatment, each sub-domain is assigned one processor.

The upper part of table 1 shows numbers of primal and dual variables for various
decompositions. The lowest row demonstrates the numerical scalability of our
algorithm. It reads numbers of the Hessian multiplications, which are the most
important indicators of the performance of the algorithm and correspond to the
numbers of iterations. It is obvious that the number of iterations increases only
mildly with refinement of the mesh in the case that the ratio H

h is held constant,
which is in good agreement with theory.

It is clear from table 2 that our algorithm exhibits the parallel scalability.

7 Conclusion

New version of the algorithms MPRGP and SMALBE stemming from the TFETI
domain decomposition method were applied to solution to contact problems
accompanied by geometric and material non-linear effects. It was shown that
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Table 1: Numerical scalability.

Subdomains 16 54 128 250

Primal variables 196 608 663 552 1 572 864 3 072 000

Dual variables 21 706 81 652 214 699 443 920

Hessian multiplications 60 63 67 69

Table 2: Parallel speed-up.

Processors 2 4 8 16 24

Solver 1.76 3.66 7.57 15.30 22.89

Preprocessor 1.70 3.61 7.55 15.24 22.81

Total 1.73 3.63 7.56 15.27 22.85

they yield accurate solution, their converge rate is high and they exhibit both
numerical and parallel scalabilities, which is essential for their application to the
high performance computers.
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