SUSTAINABLE DEVELOPMENT GOALS AND CIRCULAR ECONOMY RELATIONSHIP ROLES IN EDUCATION AND INDUSTRY FOR WASTE COLLECTION IMPLEMENTATION

ELENA CRISTINA RADA Department of Theoretical and Applied Sciences, University of Insubria, Italy

ABSTRACT

Interest on circular economy (CE) is growing from many points of view. After discussing its relationship with the Sustainable Development Goals (SDGs), this article focuses on the role played in this frame by waste collection and specifically by education and industry. The importance of source separation emerged from the analysis. This is not limited to municipal solid waste only as special waste management can contribute to the circularity of the products.

Keywords: circular economy, education, industry, municipal solid waste, sustainable development goals.

1 INTRODUCTION

In the last decade the knowledge regarding the earth pollution (air, water, soil) and the possibility in the future to remain without many materials that are needed for future human development brought attention to the necessity to inform the citizen since the early years. In 2000 the Millenium Development Goals (MDGs) were issued by the United Nation (UN) Agency to support a restart after the financial crisis, to decrease the level of poverty in the World, to increase the population health and the possibility to make education affordable for all, under a sustainable environment before 2015. In 2014 after a check of the level of achievements regarding the eight goals from the MDGs, the UN General Assembly Open Working Group proposed to implement a new Agenda for 2030: Sustainable Development Goals (SDGs) with 17 goals at international level suitable for all the countries to sustain a better human life on the planet at all levels [1]–[3]. In 2021, to be in agreement with the EU Climate Law that asks to reach carbon neutrality by 2050, a new package was issued, named FIT for 55. The aim is to help the implementation and achievements of the targets from the European Green Deal (EGD) launched in 2019, under an economic growth and assuring the principle of No One Left Behind [4]–[6]. The EU is preparing a second EGD (II EGD) for an equitable sustainability transition for the benefit of all [7].

All these laws and packages are useful and important to be implemented and their target to be achieved but for that it is very important that all the citizens of all ages are prepared and understand them and the need to comply with them for reaching a sustainable future for all. To achieve this, an environmental knowledge is necessary from the early stages and not only at university level [8]–[15]. Generally, the scientific research gave more attention to the Circular Economy (CE) at university level [16]–[26]. However, in the last decade CE and citizens knowledge at different ages has been developed because of its connection to day-to-day activities and products: clothes, municipal solid waste, energy, etc. [27]–[34].

At industrial level, the introduction of the concepts from EGD, CE, SDGs change from a country to another because of different legislations and limits. Generally, their introduction is more related with the economic part and less with the environmental one.

The present article focusses on an issue that deals with both education and industry as well as waste collection, in the framework of CE and SDGs. Indeed, waste collection is a key aspect for organising the streams of materials that is at the base of their circular valorisation with visible effects on the environment.

2 MATERIALS AND METHODS

The Scopus[®] database is a useful tool to analyse the relevance of a topic in the international scientific literature. For that reason, an analysis of its contents towards specific subjects was made as a first step of the present article. The used keywords were CE, SDGs, education, industry, waste collection.

The second step concerned a conceptual analysis of the relationship between CE and SDGs.

The third step was an analysis of the role of waste collection as a linking aspect in two strategic sectors (education and industry), in the frame of CE and the related SDGs.

3 RESULTS AND DISCUSSION

3.1 Scopus analysis

The analysis started from the papers published in the Scopus[®] database using the keywords reported in Table 1.

Keywords	Number of documents		
SDGs	5445		
Circular economy	21647		
SDGs and Circular economy	121		
SDGs and Education	626		
Circular economy and Education	306		
SDGs and Circular economy and Education	2		
SDGs and Circular economy and Industry	15		
Waste collection	6128		
Waste collection and SDGs	6		
Waste collection and Circular economy	68		
Waste collection and Education	43		
Waste collection and Industry	77		
Waste collection and Municipal waste	623		
Waste collection and Waste	2166		

Table 1: Scopus analysis results (August 2024).

The data in Table 1 opens a few comments:

- Despite being clearly visible in Scopus[®] database, SDGs and CE are not often presented together in the scientific articles;
- The links between SDGs and education and CE and education are visible in Scopus but the cross references are very limited;
- Despite being at the base of (waste) material flows valorisation, waste collection is not often presented as keyword together either with SDGs or with CE;

• The fact that the articles dealing with 'waste collection' and 'waste' have a significant presence could depend on the prevalence of a technical vision of the problem that 'forgets' the role of the overall strategies in waste management (specifically, the case of lack of an explicit CE vision in the articles on waste collection is an anomaly depending on a mostly vertical approach on the topic).

3.2 CE and SDGs

The 17 SDGs and the relationships with CE are presented in Table 1, where the vision emerged in Rodriguez-Anton et al. [35] is reported in the third column whilst the results of the revised/integrated vision emerged from the analysis of the present article is available in the last column. Rodriguez-Anton et al. [35] was chosen because of its scientific approach in the cross analysis. As can be seen, the links between CE and SDGs are multiple, but the vision in the sector is not homogeneous.

From Table 2, a few differences emerged from the two points of view, e.g., quality education must be considered a key aspect in CE implementation; sanitation can have some technical options open to material recovery from waste; some forms of energy generation can have a link to ash recovery.

3.3 Waste collection in CE and SDGs

In this section some considerations on waste collection towards SDGs firstly and CE secondly are presented in Tables 3 and 4. Some key aspects are reported in italics.

What is clear from Table 3 is the significant role of waste collection in supporting the SDGs. Indeed, waste collection, e.g.,

- Prevents problem of health (water, soil, air) avoiding waste dispersion (also referred to sanitation issues) SDGs 2, 3 and 6
- Waste selective collection is a direct experience of environmental management based also on educational concepts SDG 4
- Needs an adequate organisation to protect the workers involved SDG 8
- Can be enhanced thanks to innovative solutions SDG 9
- Is an opportunity to offer to all the citizen the same environmental protection SDG 10
- Can be organised smartly in smart and sustainable cities SDG 11
- Supports circularity in case of SC (responsible consumption) SDG 12
- Allows implementing low CO₂ options and environmental footprints decrease in case of food waste collection and biological treatment (diverting waste from landfill) SDG 13
- Waste selective collection is a direct connected with the decrease of marine and land pollution SDGs 14 and 15.

Table 4 is dedicated to waste collection and CE, underlying the crucial role of selective collection (SC).

Table 4 refers to municipal solid waste as special waste which opens to a huge variety of cases. Plastic packaging is presently the object of international attention because of the dispersion of plastic into the oceans. Some international projects are oriented to a better sensibilisation to the criticalities, e.g., the project EDU4Plastic – Education for Plastic in a Circular and Climate Neutral Economy – Preventing Waste Ending Up into the Environment and Pro-Pla – Protein from Plastic [35], [36]. More in general plastic is a tricky issue that must be faced with also in term of microplastic management [37], [38].

SDG number and name	CE relationship [35]	SDGs and CE		
		Partially related thanks to		
		Job creation		
1. No poverty	_	Economic stability		
	-	Resource efficiency		
		Environmental benefits thanks to pollution reduction		
		Innovation and inclusivity		
	Related	Related thanks to		
		Food waste reduction		
2. Zero hunger		Sustainable agriculture		
2. Zero nunger		Local food system		
		Nutrient recycling		
		Resource efficiency.		
		Related thanks to		
		Pollution reduction: waste, water, soil, air		
3. Good health	Related	Sustainable resource use: maintain natural ecosystems		
and well-being	Related	Healthier products: no toxic and safe		
		Economic stability: stress reduction		
		Community resilience: local products		
		Related thanks to		
4 Quality		CE principles in the education curricula at different levels		
education	-	Practical projects: waste recycling, sustainable products		
education		design, etc.		
		Partnership projects with local businesses		
		Related thanks to		
5 Gender		Job opportunities for all		
equality	Related	Inclusive policy		
equality		Health and safety for all thanks to a healthier environment		
		Education and training for all		
	No relationship	Partially related thanks to		
6 Clean water		Wastewater treatment and reuse under CE view		
and sanitation		Resource recovery: energy, nutrients, clean water		
and sumation		Sustainable water management		
		Resilient water systems		
	-	Partially related thanks to		
		Sustainable energy systems: renewable energy and longer		
7. Affordable and clean energy		life cycles		
		Innovation and technologies		
		Recycling and reuse of some materials need for energy		
		plants developments		
	Related	Related thanks to		
8. Decent work and economic growth		Job creation and skills developments		
		Sustainable economic growth avoiding compromising the		
		future		
		Inclusive policies		
		Resilient economies: minimise waste production and		
		resources use		

Table 2: Relationships between SDGs and CE.

SDG number and name	CE relationship [35]	SDGs and CE		
		Related thanks to		
9. Industry, innovation and infrastructure		Sustainable industrial practices		
	Dalatad	Innovative business models		
	Related	Efficient infrastructure: longer life		
		Technological advancements		
		Economic growth		
	-	Partially related thanks to		
		Job creation and economic opportunities for marginal		
10. Reduced		communities		
inequalities		Environmental justice (mainly connected with low-income		
		communities)		
		Inclusive policies and global impact		
11 Sustainable		Related thanks to		
cities and	Related	Urban resources management		
communities	Related	Smart city initiatives		
communities		Policy and planning		
12 Responsible		Related thanks to		
consumption and	Related	Resource efficiency and waste reduction		
production		Sustainable business models		
production		Consumer awareness		
	Partially related	Related thanks to		
13 Climate		Material efficiency: lower emissions		
action		Waste reduction: emission reduction		
action		Sustainable products: carbon footprint reduction		
		Adaptation and resilience: local and not global resources use		
		Related thanks to		
14 Life below	Partially related	Marine pollution reduction		
water		Sustainable fishing		
water		Innovative materials: biodegradable		
		Resource efficiency: less footprint		
	No relationship	Related thanks to		
		Sustainable agriculture		
15. Life on land		Forest conservation		
		Soil health: compost		
		Biodiversity protection		
16 Peace	Related	Related thanks to		
justice, and strong institutions		Conflicts over resources decrease		
		Better institutions: transparency, accountability and		
		sustainability		
		Access to Justice: law and regulation		
		Related thanks to		
17. Partnerships	-	Collaborative innovation		
for the goals		Resource sharing		
		Economic and social benefits		

Table 2: Continued.

SDG number and name	Waste collection relationship
1. No poverty	Health problems
	Economic burden
	Environmental impact
	Food waste reduction
2. Zero hunger	Environmental impact
	Diseases prevention
3. Good health and well-being	<i>Environmental</i> health
of coord nearly and went comp	Economic benefits: health care cost decrease
	Raising awareness
4. Quality education	Bahaviour change
5. Gender equality	_
5. Gender equality	Less water pollution:
6 Clean water and sanitation	Health impact
o. Clean water and samuaton	<i>Environmental</i> pollution
	Energy recovery from waste: cost effective solution and
7. Affordable and clean energy	environmental advantages
	Ioh creation
8. Decent work and economic	Improving working conditions
growth	Skills developments
	Smart waste management
9 Industry innovation and	Waste to energy systems
infrastructure	Sustainable infrastructure: urban planning
lintastructure	Economic growth and job creation
	Access to services
10 Reduced inequalities	Health and safety improvements
10. Reduced inequalities	Economic opportunities
	Economic opportunities
11 Sustainable cities and	Innovative and smart technologies
communities	Policy and regulations
communities	Environmental and economic henefits
	Waste reduction
12. Responsible consumption and	Pacycling and rause
production	Consumer awareness
	Emission reduction
13. Climate action	Emission featurint reduction
	Pollution provention
14. Life below water	Politicon prevention
	Biodiversity protection
15 Life on land	Pollunon prevention
15. Life on land	Habit protection
	D L CL L C
16. Peace, justice, and strong	Kule of law and enforcement
institutions	Inclusive decision-making
	Transparency and accountability
	Collaborative efforts
17. Partnerships for the goals	Resource mobilisation
	Knowledge sharing
	Policy and regulation

Table 3:	Relationships	between	waste	collection	and	SDGs.
----------	---------------	---------	-------	------------	-----	-------

Waste collection aspects	CE relationship
SC of food waste and green waste	Direct/indirect compost production
SC of paper and cardboard	Production of cellulosic products
SC of plastic packaging	Production of plastic products
SC of glass packaging	Production of glass packaging
SC of metals	Production of metal packaging and other
SC of residual waste	Energy production

Table 4: Common relationships between (municipal) waste collection and CE.

Summing up, waste collection has many links with SDGs and CE. The next step will zoom on the links among waste collection and education/industry.

3.3.1 Waste collection and education

Universities are living laboratories where learning reaches today's students and tomorrow's decision makers, but also (sometime indirectly) parents and other people. In this frame, SC of waste in university is an opportunity to directly understand the criteria of organising a separation of material flows aimed to CE strategies [39], [40]. Moreover, a university can propose teaching modules involving waste collection from the technical, economic and social points of view. However, education is not only at university level. High schools can take advantage on the topic of waste collection to use it as subject of discussion with contents depending on the orientation of the school (technical, humanistic, etc.). In reality waste collection must be a topic of learning also at lower levels of education. Future citizens used to interact with that in their childhood can guarantee significant results in term of CE and SDGs implementation. Examples of collaboration between classrooms at primary school level can be found also at international level.

3.3.2 Waste collection and industry

An optimised waste collection in companies is at the base of waste valorisation as material to be recycled. It must be pointed out that the streams potentially valorisable are often larger than the ones of municipal solid waste. When waste collection in companies is out of control (i.e., far to be optimised), often the destination of waste is a landfill even if that means loss of resources. In some countries the tariff for landfilling has grown so much that waste recycling can be economically sustainable. The reason of this increase in costs depends also on the need to comply with an EU target of maximum landfilling rate set at 10% of the waste generated within 2035.

Waste collection and industry are strongly connected and related to SGDs and CE through:

- Economic impact waste collection costs
- Resource recovery selected waste as input material
- Environmental benefits industries must comply also with the waste regulation
- Achieving sustainability and circularity thanks to the waste integration.

4 CONCLUSION

Starting from cross considerations on SDGs and CE, the present article pointed out the need of a clearer valorisation of the cross connections between them. The literature on the topic is not yet fully developed and different visions can be easily found. Zooming in on the topic, what emerged are the multiple roles of waste collection in supporting a sustainable vision.

Moreover, waste collection emerged as key factor also in two sectors: education and industry. In the first case, waste collection can be the subject of activities of environmental education growth at many levels, where universities play a role that cannot be unique: all the education levels should be involved. Companies and waste collection are expected to be more connected also because some decisions at EU level concerning the role of landfill in the waste management sector: restrictions on landfilling of waste are forcing the companies to reorganise their strategies towards recycling.

AKNOWLEDGEMENT

This work was supported by: Smart Work Orchestra, 2022–2024, funded by Autonomous Province of Trento, LP6/99 and promoted by I&S Informatica e Servizi S.r.l., Trento, Italy.

REFERENCES

- Parotto, E. & Pablos-Méndez, A., From MDGs to SDGs. Sustainable Development Goals Series, F2781, pp. 463–468, 2023. https://doi.org/10.1007/978-3-031-33851-9_71.
- [2] Kushnir, I. & Nunes, A., Education and the UN Development Goals Projects (MDGs and SDGs): Definitions, links, operationalisations. *Journal of Research in International Education*, **21**(1), pp. 3–21, 2022. https://doi.org/10.1177/14752409221088942.
- [3] Ahmed, A., World sustainable development outlook 2007: Knowledge management and sustainable development in the 21st century. World Sustainable Development Outlook 2007: Knowledge Management and Sustainable Development in the 21st Century, pp. 1–400, 2017. https://doi.org/10.4324/9781351280242.
- [4] Implementing the European Green Deal through Transformational Change, A review of EU climate action through the lens of the 'six transformations'. https://files.unsdsn.org/211019-EGD-report.pdf. Accessed on: 4 Apr. 2024.
- [5] EU Climate Law. https://climate.ec.europa.eu/eu-action/european-climate-law_en#: ~:text=The%20Climate%20Law%20includes%3A,of%20emission%20reductions%2 0and%20removals. Accessed on: 4 Apr. 2024.
- [6] European Green Deal. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_it. Accessed on: 4 Apr. 2024.
- [7] European Committee of Regions. https://cor.europa.eu/it/events/Pages/Regions-citiesshaping-European-Green-Deal.aspx. Accessed on: 4 Apr. 2024.
- [8] Mondal, M. & Khan, M., The sustainable future: The imperative for environmental education in the 21st century. *Inclusive Educational Practices and Technologies for Promoting Sustainability*, pp. 114–127, 2024. https://doi.org/10.4018/979-8-3693-6955-5.ch006.
- [9] Abo-Khalil, A.G., Integrating sustainability into higher education challenges and opportunities for universities worldwide. *Heliyon*, **10**(9), e29946. https://doi.org/10.1016/j.heliyon.2024.e29946.
- [10] Schneider, P., Folkens, L. & Busch, M., The teaching-research-practice nexus as framework for the implementation of sustainability in curricula in higher education. *World Sustainability Series*, pp. 113–136, 2018. https://doi.org/10.1007/978-3-319-70281-0_8.
- [11] Schiavon, M. et al., Planning sustainability in higher education: Three case studies. WIT Transactions on Ecology and the Environment, vol. 253, WIT Press: Southampton and Boston, pp. 99–110, 2021. https://doi.org/10.2495/SC210091.

- [12] Kopnina, H., Education for the future? Critical evaluation of education for sustainable development goals. *Journal of Environmental Education*, **51**(4), pp. 280–291, 2020. https://doi.org/10.1080/00958964.2019.1710444.
- [13] Obrecht, M., Feodorova, Z. & Rosi, M., Assessment of environmental sustainability integration into higher education for future experts and leaders. *Journal of Environmental Management*, **316**, 115223, 2022. https://doi.org/10.1016/j.jenvman.2022.115223.
- [14] Grinfelde, I., Briede, B., Pilecka-Ulcugaceva, J., Valujeva, K. & Liepa, S., The education for sustainable development for environmental engineering students. *International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management*, 21(5.1), pp. 583–590, 2021.
- [15] Brahimi, T., Sarirete, A. & Al-Lail, H.J., Innovation, leadership, and education: How Effat University is paving the way for vision 2030. *Transformative Leadership and Sustainable Innovation in Education: Interdisciplinary Perspectives*, pp. 169–189, 2024. https://doi.org/1108/978-1-83753-536-120241011.
- [16] Kopnina, H., Discussing practical and educational challenges in teaching circular economy. *Global Opportunities for Entrepreneurial Growth: Coopetition and Knowledge Dynamics within and across Firms*, pp. 507–522, 2017. https://doi.org/10.1108/978-1-78714-501-620171028.
- [17] Bugallo-Rodríguez, A. & Vega-Marcote, P., Circular economy, sustainability and teacher training in a higher education institution. *International Journal of Sustainability in Higher Education*, **21**(7), pp. 1351–1366, 2020. https://doi.org/10.1108/IJSHE-02-2020-0049.
- [18] Qu, D., Shevchenko, T. & Yan, X., University curriculum education activities towards circular economy implementation. *International Journal of Scientific and Technology Research*, **9**(5), pp. 200–206, 2020.
- [19] Kirchherr, J. & Piscicelli, L., Towards an education for the circular economy (ECE): Five teaching principles and a case study. *Resources, Conservation and Recycling*, 150, 104406, 2019. https://doi.org/10.1016/j.resconrec.2019.104406.
- [20] Ayoush, M., Rabayah, H., Toumeh, A., Aboushi, A. & Alawneh, R., Circular economy practices in higher education institutions: Towards sustainable development. *Studies in Big Data*, **135**, pp. 291–300, 2023. https://doi.org/10.1007/978-3-031-42463-2_27.
- [21] Tiippana-Usvasalo, M., Pajunen, N. & Maria, H., The role of education in promoting circular economy. *International Journal of Sustainable Engineering*, 16(1), pp. 92– 103, 2023. https://doi.org/10.1080/19397038.2023.2210592.
- [22] Potter, C., Reading, writing, arithmetic... roundness? Preparing younger learners with foundational circular economy education to allow for a circular economy acceleration at higher education. *Proceedings of the 25th International Conference on Engineering and Product Design Education: Responsible Innovation for Global Co-Habitation*, pp. 475–480, 2023.
- [23] Renfors, S.M., Education for the circular economy in higher education: An overview of the current state. *International Journal of Sustainability in Higher Education*, **25**(9), pp. 111–127, 2024. https://doi.org/10.1108/IJSHE-07-2023-0270.
- [24] Garito, M.A., Caforio, A., Falegnami, A., Tomassi, A. & Romano, E., Shape the EU future citizen: Environmental education on the European Green Deal. *Energy Reports*, 9, pp. 340–354, 2023. https://doi.org/10.1016/j.egyr.2023.06.001.

- [25] Yang, C.H., Chuang, M.C. & Chen, D.F., Role of higher education students' environmental awareness and environmental concern in the purchase intention of circular economy products. *Sustainability*, **16**(5), 1979, 2024. https://doi.org/10.3390/su16051979.
- [26] Atstaja, D., Purvianš, M., Butkevičs, J., Uvarova, I. & Cudečka-Puriana, N., Developing e-learning course circular economy in the study process and adult education. *E3S Web of Conferences*, **371**, 05025, 2023. https://doi.org/10.1051/e3sconf/202337105025.
- [27] Lawrence, J., Bettinetti, R., Torretta, V. & Rada, E.C., Investigating the effectiveness of clothes recovery programs in promoting a circular economy: A review. *E3S Web of Conferences*, 408, 01002. https://doi.org/10.1051/e3sconf/202340801002.
- [28] Rada, E.C., Circular economy: Origins, evolution and role of MSW. *Environmental and Climate Technologies*, 27(1), pp. 989–998, 2023. https://doi.org/10.2478/rtuect-2023-0072.
- [29] Ramadan, B.S. et al., Circular economy from a water and wastewater management perspective. *Sustainable and Circular Management of Resources and Waste Towards a Green Deal*, pp. 79–91, 2023.
- https://doi.org/10.1016/B978-0-323-95278-1.00003-6. [30] Ariöz, Y., Yıldızbaşı, A., Özceylan, E. & Yılmaz, İ., Systematic literature review based
- [50] Arioz, F., Finizzaşi, A., Ozceyian, E. & Finizz, F., Systematic interature review based on the descriptive, bibliometric, and content analysis of renewable energy supply chain for a circular economy. *Journal of Renewable and Sustainable Energy*, **16**(2), 022702, 2024. https://doi.org/10.1063/5.0184430.
- [31] Kiselev, A., Magaril, E., Panepinto, D., Rada, E.C., Ravina, M. & Zanetti, M.C., Sustainable energy management benchmark at wastewater treatment plant. *Sustainability*, **13**(22), 12885, 2021. https://doi.org/110.3390/su132212885.
- [32] Rada, E.C., Bresciani, C., Girelli, E., Ragazzi, M., Schiavon, M. & Torretta, V., Analysis and measures to improve waste management in schools. *Sustainability*, 8(9), p. 840, 2016. https://doi.org/10.3390/su8090840.
- [33] Nolasco, E., Vieira Duraes, P.H., Pereira Gonçalves, J., Oliviera, M.C., Monteiro de Abreu, L. & Nascimento de Almeida, A., Characterization of solid wastes as a tool to implement waste management strategies in a university campus. *International Journal* of Sustainability in Higher Education, 22(1), pp. 217–236, 2021. https://doi.org/10.1108/IJSHE-12-2019-0358.
- [34] Rabeiy, R., Almutairi, S., Birima, A., Kassem, L. & Nafady, A., A cross-sectional study of knowledge, practice, and management of solid waste segregation in higher educational institutes: A case study in KSA. *Sustainability*, 15(6), 5516, 2023. https://doi.org/10.3390/su15065516.
- [35] Rodriguez-Anton, J.M., Rubio-Andrada, L., Celemín-Pedroche, M.S. & Alonso-Almeida, M.D.M., Analysis of the relations between circular economy and sustainable development goals. *International Journal of Sustainable Development and World Ecology*, 26(8), pp. 708–720, 2019.
- https://doi.org/10.1080/13504509.2019.1666754. [36] Microplastics Today. https://microplastics.today.
- [37] Miino, M.C., Galafassi, S., Zullo, R., Torretta, V. & Rada, E.C., Microplastics removal in wastewater treatment plant: A review of the different approaches to limit their release in the environment. *Science of the Total Environment*, **930**, 172675, 2024. https://doi.org/10.1016/j.scitotenv.2024.172675.

- [38] Rafiq A. & Xu, J.L., Microplastics in waste management systems: A review of analytical methods, challenges and prospects. *Waste Management*, **171**, pp. 54–70, 2023. https://doi.org/10.1016/j.wasman.2023.08.015.
- [39] Rada, E.C., Giurea, R., Minno, M.C. & Torretta, V., Approaching sustainability and circularity along waste management systems in universities: An overview. *Frontiers in Environmental Science*, **12**, 1363024, 2024. https://doi.org/10.3389/fenvs.2024.1363024.
- [40] Grodzińska-Jurczak, M., Tomal, P., Tarabuła-Fiertak, M., Nieszporek, K. & Read, A.D., Effects of an educational campaign on public environmental attitudes and behaviour in Poland. *Resources, Conservation and Recycling,* 46(2), pp. 182–197, 2006. https://doi.org/10.1016/j.resconrec.2005.06.010.

