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Abstract 

Pedestrian simulation is a central issue in evacuation related topics; an issue that 
has recently received renewed interest. In order to estimate escape time from a 
building, this paper describes a two-module model which combines Agent-Based 
Models (ABM) and Cellular Automata (CA). The former module (ABM) 
simulates pedestrians exploring the building space; the latter (CA) simulates the 
proper evacuation process. The novelty of the model is represented by the first 
module’s approach, which is inspired to Ant Colony Optimisation (ACO). Using 
this metaphor, it is possible to simulate the way in which people draw their 
cognitive map of the building’s space. According to ACO, agents represent 
‘scout ants’ looking for the exit. Initially, ants move in a random fashion. When 
an ant reaches the exit, it updates the grid by adding an amount of pheromone. 
The result is a pheromone trail that follows the shortest possible path from anthill 
to the exit cell. Running the former module, we obtain a map containing 
distances from each point to the exit. The latter CA module uses this map to 
estimate escape time. 
Keywords:   Cellular Automata; evacuation processes; pedestrian behaviour. 

1 Introduction 

Simulating pedestrian behaviour can be ascribed to problems dealing with 
Complex Systems. Everyone has experienced the complexity of pedestrian 
dynamics: speed slowly decreases as crowding arises, then it drops to zero when 
density equals a specific critical value. Indeed, jamming formation is due to local 
fluctuations in pedestrian speed. According to Complex Systems Theory, 
microscopic events may able to produce macroscopic behaviours, the so-called 
emergent phenomena. We live through complex systems behaviour every day in 
a traffic jam, when we stand in a queue or leave a crowded place.  

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 82,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Safety and Security Engineering  33



     Since interactions in complex systems usually are not linear, global and 
deterministic models can fail in foreseeing future status of such systems. In 
addition, predictions may significantly differ from real measures if not taking 
into account feedbacks and self-enforcing mechanism of complex interaction. 
     Because of their great adaptability and suppleness, Cellular Automata (CA) 
and Agent-Based Models (ABM) have gained popularity among researchers 
during the last two decades. Using CA and ABM, one can reproduce complex 
emergent phenomena by enforcing a few simple rules to the model. Moreover, 
such patterns work very well in simulating self-organising processes in many 
domains, from biology to traffic control, from social sciences to ethology. 
Furthermore, the current desktop PC can easily simulate larger crowds and 
populations. All these strengths moved researchers to test CA and ABM in 
simulating pedestrian behaviour for safety issues [1–5].  
     Because simulating pedestrian behaviour involves a large number of 
variables, studies usually focus on specific aspects of the problem. Some studies 
[2, 3] concentrate on modelling competitive and co-operative behaviour as in 
clogging and conflict resolution. Other studies estimate exit rate as a function of 
door size [4, 5] or of both door size and initial position [6], in order to foresee the 
formation of arches at the exits. Finally, some studies focus on jammed pattern 
occurring in intersections of pedestrian flows [7]. 
     In this study, both CA and ABM are used to simulate pedestrian behaviour in 
emergencies. First, a simple ABM (here agents are ‘scout-ants’) is used to 
explore the building, which people are escaping from. Then, an ordinary CA 
simulates the egress dynamics in order to estimate the escape time. The main 
goal concerns with simulating the process by which pedestrian collect 
information about the environment they are escaping from.   

2 The model  

2.1 General framework 

As stated above, we can divide the proposed model into two modules: the former 
acquiring information about space and the latter simulating evacuation process. 
These two modules are consecutively performed in distinct steps. Of course, they 
act on the same representation of the environment, a regular grid-space of 
squared cells. As in previous studies [2–4], each cell can be either empty or 
fulfilled by a single agent. When cellular automaton is executed, agent-based 
model’s output (namely the floor field) becomes now an input. In both modules, 
pedestrians are only allowed to move in four directions, since a Von Neumann’s 
neighbourhood is considered. We are not ruling out resorting to different 
neighbourhood shapes, e.g. Moore, in further developments. Both in agent-based 
sub-model and in cellular automaton, cells are updated synchronously. 

2.2 The former module: cognitive issues 

The novelty of this study is the way in which we consider the distances from the 
exit. In some pedestrian CA models, information about distance from exit is 
synthesised in a so-called ‘static floor field’ [2–4]. Before running the model, 
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researchers usually prepare the floor field by means of euclidean or Manhattan 
metric. 
     Such an approach entails two intrinsic disadvantages. First, using this 
approach in building the surface one obtains the same result whether there are 
obstacles on the grid or not. Figure 1 shows an obstacle interposing between a 
pedestrian and the exit. Obviously, every building’s floor is a labyrinth full of 
furniture and partition walls, obstructing and conditioning pedestrian flow. When 
an obstacle blocks the pedestrian movement, unlike real people shown in Fig.1 
(a), Sims could be entrapped in blind alleys, without being able to escape (b). As 
in most of pedestrian simulating CA, Sims move from high-distance cells to low-
distance ones, according to a sort of local search philosophy.  
 

(a) (b)(a) (b)

 

Figure 1: 
approach entraps the simulated pedestrian in a blind alley. 

     The second inconvenience is subtler, thus, a change in approach is required to 
remove it. When we use geometric measures in building impedance surface, we 
completely ignore the way in which pedestrians perceive space. In modelling 
pedestrian movement, one must distinguish between actual geometric space and 
perceived space which are very different. Pedestrians use to refer to the second 
one, which is not directly measurable since it is a subjective representation of the 
actual geometric space.  
     To study the way in which pedestrians move, one must to take into account 
this cognitive aspect, because people do not measure space by means of an 
euclidean metric, but they refers to a subjective spatial map in their minds. 
Environmental psychologists studying these issues usually refer to personal 
spatial knowledge by means of the term cognitive map. A wide literature has 
been produced to study spatial cognitive processes, see for example [8, 9]. 
Cognitive maps are not static, since they continuously grow and become more 
detailed as person moves. Golledge and Stimson [10] claimed that path or 
network structure used in everyday spatial behaviour becomes a critical feature 
in building the personal image of a spatial environment. Indeed, cognitive map 
formation is a continuous and recursive process, as shown in fig. 2, representing 
the positive feedback of exploring and acquiring new information about spatial 
environment. 
     Exploring the way on which people perceive space is never an easy task for 
scientists. Horan [11] demonstrated that subjective image of a library varies from 
a user to another, as anyone can notice by confronting maps, fig. 3. 
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Figure 2: The process of acquiring spatial information. 

 

Figure 3: A library and how students perceive it. Sketching is useful in 
exploring cognitive maps. Adapted from [11]. 

     In order to predict the building users’ self-reported incidence of being lost, 
Weisman [12] measured the readability of floor plans by observing their sketch 
maps. 
     Asking people to draw the space surrounding them is the most affordable and 
effective method for knowing the image of the environment owned by 
pedestrians. Regrettably, digitising and interpreting sketch maps requires a lot of 
work as well as hardware made on this specific purpose, e.g. the method 
proposed by Blaser et al. [13]. Paradoxically, when a rigorous survey of 
pedestrians’ view of the environment is conducted, it takes a chance on putting 
all researchers’ energies into this preliminary stage, rather than focusing on 
simulation of pedestrian movement.  
     In this work, we propose a solution by taking in account the cognitive issues 
stated above and trying to clear the possible hurdles. On the one hand, we attach 
great importance to cognitive aspects in simulating pedestrian behaviour; to this 
end, a cognitive-based procedure is implemented to draw the floor field. On the 
other hand, according to proposed approach, no survey is needed to draw this 
surface, since an agent-based model is tailored to meet this specific task. 
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     In the proposed solution, agents act like ants in Ant Colony Optimisation 
(ACO). Although there is no centralised control, an ant colony is able to solve 
complex problems like treading optimal paths to food. This metaphor is inspired 
by nature and it is useful in distributed search activities. Ant-based models have 
been successful applied in many problems of Operational Research, such 
travelling salesman problem (TSP); see for example [14, 15]. ACO heuristics 
were first inspired by Chemotaxis, e.g. the biological cell movement induced by 
chemical substances. This model represents an interpretation of ACO relaxing its 
principles, since basic aims are different. Indeed, ACO is usually used to search 
for minimum or maximum. Here, exit location is well known, focal point is now 
the way to reach it.  
     In the proposed ant-optimisation model, a swarm of scout-ants explores the 
grid space. Each scout ant perceives the position of the exit as it is biased by a 
random error. As a result, ants move in a semi-random fashion. When an ant 
reaches the exit, it updates the grid by adding an amount of pheromone on the 
cell it got over. To be exact, ants go backwards from exit to starting point, 
putting zero in the exit cells, one in the second cells and so on. Obviously, each 
ant only updates a cell if its value is lower than the cell’s current value. This fact 
could be better represented by means of the pseudo-basic code segment shown in 
fig. 4. 
 

If cell is exit then
 For i = 0 to traveled path length 
  If  escape-map current value > i then  
   Set escape-map current value = i 
  End 
 Next i 
End 

 

Figure 4: The core of the former module. This procedure (here shown in 
pseudo-code) controls ants in leaving pheromone on the trail they 
moved on. 

     Before starting agent-based sub-model run, it is necessary to initialise the 
escape-map by setting all cells to infinite. Ants are automatically generated in 
random points of the grid. Moreover, new ants are continuously generated in 
order to replace those completed their task. Consequently, values in the ‘floor 
field’ quickly decrease during the early phases of the simulation, and then they 
slow down decreasing. Finally, when iteration ends with no more cell updated, 
simulation stops.   
     If ants were able to measure distance from exit accurately, they are not able to 
avoid obstacles, as shown in fig. 1. Thus, ants’ sight is biased by random noise. 
In concrete terms, real distance, say dr, is biased by multiplying per a random 
number r.  
     The result is what ants perceive: db, namely biased distance, as in following 
formula: 
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b rd r d= ⋅ , [0,1]r∈ .                                       (1) 
  
     Each ant moves toward the neighbourhood’s cell with the smallest db value. 
As simulation run, ants became able to read the floor field’s values, say de. 
Initially, this characteristic is disabled, since all cells in escape-map have 
identical infinite value. As simulation run, ants rely more on floor field’s values 
than measured value. Thus, random fashion motion becomes gradually more 
deterministic. This behaviour is ensured by the following expression: 

  
( ) (1 ( ))p r ed t d t dα α= + − ,                                   (2) 

 
where dp is the perceived distance and α(t) a monotonic increasing function. 
Initially, α(t) is zero; step-by-step, it rises towards one. Finally, α(t) amount 
exactly to one when simulation stops. In conclusion, each ant moves toward the 
neighbourhood’s cell with the smallest dp value. Obviously, ants are not allowed 
moving toward obstacle cell. 
     The resulting floor field shows an important characteristic: it might have 
many local maxima (the obstacles), but no local minimum, since exit is an 
absolute minimum. This characteristic is vital for the smooth running of the 
proposed model. Because of it, agents are not in danger of being entrapped in a 
local minimum. Here, local minimum means that there is no element completely 
rounded by larger values. Formally, a given a cell so represents a local minimum 
when: 

        
 ( ) ( ), ( ),o o of s f s s N s s> ∀ ∈ ∀ ∈Ω ,                           (3) 

  
where f(s) is the value in floor field, Ν is neighbourhood of so and Ω is the 
escape-map.  
 

 

Figure 5: A sample building and the relative floor field as is estimated by the 
former module. Arrows (left) shows the surface’s slope. 

     It is very difficult giving a rigorously formal proof of this fact, but it could be 
intuitively understood with the help of a geological similitude. Just to make the 
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things clear, image escape-map initial configuration as a cubic shaped plateau. 
When rain falls, many little rivers start eroding the rock. After several millennia, 
the water had scored channels into the plateau, from its centre to the external 
edges. This metaphor is confirmed observing the continuous representation of 
the floor field, fig. 5.  On the left, a sample building is shown, while the floor 
field is displayed on the right. Here, black cells represent walls and obstacles, 
while arrows indicate floor field’s slope.  

2.3 Cellular Automaton module 

Cellular automata are discrete dynamical systems operating on a uniform, regular 
lattice. According to Artificial Life studies, CA vehicular and pedestrian 
simulations follow a parallel, distributed and bottom-up approach [16]. Due to 
many points in common, vehicular and pedestrian CA model evolved parallel to 
one another. Despite this, modelling pedestrian flows is more difficult than 
simulating vehicular traffic, because complex adaptive processes affect 
pedestrian movement much more than drivers. Besides, pedestrian movements 
are not restricted to canalised lanes, but they occur on a bi-dimensional surface. 
Finally, pedestrian movements are not encoded by strictly formal rules like 
signboards or traffic lights. 
     We opted to design the CA model’s structure as simple as possible. Because 
floor field has been estimated, no more random search is needed and each 
automaton known exactly where the exit is located. All that automata have to do 
is to follow decreasing values of the floor field until they reach exit. The 
resulting movement is a sort of reverse hill climbing similar to local search 
algorithms. The only difference is that automata look for minimum, i.e. the exit 
cell. 
     Since all automata move simultaneously, jamming and arching phenomena 
are allowed. During every single step, each pedestrian is allowed moving in its 
neighbourhood, according to two simple transition rules. First, each pedestrian 
search for minimum escape-map value in surrounding cells included in Von 
Neumann neighbourhood. Second, if cell with the smallest value is already 
occupied, automaton stands still.  
     By fixing pedestrian speed, we are able to estimate the total time to escape. In 
the last century, a large number of studies have been published in estimating 
average pedestrian velocity, since this information is of use for many 
applications. Therefore, range of available data includes many typical values, 
and then is difficult to decide. In addition, pedestrian velocity is not a constant, 
because it varies according to sex, age, floor’s slope and so on.  
     We assume that people move at 1.4 m/s, according to Thompson and 
Marchant [17]. They synthesised data from many studies in a unique curve, 
according to which, velocity stabilises on 1.4 m/s, when interpersonal distance 
exceeds 1.5 m/s. In order to estimate escape time, we have to fix cell size too. 
According to previous studies [x-x], we choose to use a 40 cm x 40 cm grid, 
which is consistent with ergonomic consideration on average human built. 
Combining cell size and velocity, results that any time-step last 0.285 second. 
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Thus, it is possible to estimate escape time by multiplying the number of steps 
needed to evacuate and duration of a single time step.    

3 Simulations 

We test the model on a part of a real building, fig. 6, by foreseeing escape time 
for ten people in two rooms. In order to use the model, we convert this map into 
the two raster map displayed in fig. 7. The grid on the left is 0.40 metres sized, 
while the other measures 0.60 metres per cell side. 
     Black cells are walls and furniture, while grey cells represent chairs, which 
people start escaping from. Running hundred times the model on both the grid, 
we obtained the escape time listed in table 1 with the real value in the last row. 
As it is to be expected, a finer grid resolution is able to perform better 
simulations. Moreover, when cell size is too large, obstacles are not well 
modelled. 
 

 

Figure 6: The study area. 

 

Figure 7: Two raster representations of the study area. A squared lattice with 
40cm per size (left) and with 60cm (right). 

Table 1:  Comparing simulated and real escape times. 

 
cell size (m) number  of 

simulation 
number of time-

steps (sec) std. dev. average escape 
time (sec) 

Grid 0.40m 0.40 100 29.2 1.164 8.33 
Grid 0.60m 0.60 100 24.8 1.678 10.59 
Observed value - - - - 7.05 
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4 Conclusions 

In this study, a two-dimensional CA is proposed to simulate the evacuation 
process. Here the model is requested to reproduce complex patterns occurring 
during the escape from a building, but it is easy to implement for any situation, 
such as aircrafts [2] or passenger ships [19]. Thus, the first conclusion is that 
simple cellular automata are sufficient to yield the richness of pedestrian 
behaviour. That is correct, but it is not the main goal of this study. Indeed, a 
number of previous studies have already done it. Unlike them, this study focuses 
the period preceding emergency. During this everyday life, pedestrians are able 
to learn subliminally the shortest way to escape, in a so-called cognitive process. 
The main goal of this paper is modelling the way in which people learn exit 
paths. To this end, a model using ‘ants’ is presented. It is shown that this method 
is able to draw a so-called ‘floor field’ which is essential in simulating 
evacuation by means of CA models, see for example [2–4]. The entire model is 
able to approximate the time needed by ten persons to escape from two rooms, 
since error is reasonably small (about 1.3 seconds). 
     Obviously, the proposed model is liable to further improvements. For 
example, the CA module can be enriched by considering conflicts among 
pedestrians as in [2]. In addition, some improvements are desirable in 
schematising pedestrian velocity. Finally, it is possible to consider the effect of 
exogenous variables, like panic, or constraining conditions as in walking through 
a door, with counter-flow etc., see for example Lee et al. [18]. 
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