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Abstract 

The paper presents a drought characterization for Slovakia based on the 
standardized precipitation index at the time scale of three months (SPI3) applied 
to the precipitation records at 491 Slovakian rain gauges over a considerable 
span (33 years). After a drought spatial regionalization, using Principal 
Component Analysis (PCA), the kernel occurrence rate estimation method 
coupled with bootstrap confidence band was applied to characterize the yearly 
drought occurrence rates in each one of the regions given by the PCA, aiming at 
identifying trends in the frequency of the droughts. The study also includes 
examples of surfaces of precipitation thresholds that can be easily and reliably 
utilized to recognize and monitor the drought occurrences at the early stages of 
their development. Those surfaces were obtained by reverting to the original 
precipitation field the values of the SPI that represent drought limits. 
Keywords: drought, standardized precipitation index, principal component 
analysis, kernel occurrence rate estimator, precipitation threshold surfaces. 

1 Introduction, study area, precipitation data  
and drought index 

Droughts are generally associated with the persistence of low precipitation, soil 
moisture and water availability relative to the normal levels in a designated area. 

 WIT Transactions on Ecology and The Environment, Vol 197,
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2015 WIT Press

doi:10.2495/RM150211

River Basin Management VIII  237



Although there is no universally accepted definition for drought [1] defines it as 
“a sustained and regionally extensive occurrence of below average natural water 
availability”. Different from other extreme events, like floods and earthquakes, 
droughts remain a less visible natural risk, whose impacts are not systematically 
recorded. Droughts are among the most complex and least understood natural 
hazards, affecting more people than any other one. They are also recurrent 
hazards particularly in areas with pronounced natural hydrological temporal 
variability. 
     The objective of the present study was to provide a comprehensive 
characterization of the drought occurrences in the entire Slovakia based on the 
monthly precipitations, from January 1981 to December 2013 (33 years), in the 
491 rain gauges evenly distributed over the country schematically located in Fig. 
1 over a map of the mean annual precipitation. 
 

 

Figure 1: Location on the 491 rain gauges over a map of mean annual 
precipitation in Slovakia. 

     From the total number of months of 491 x 33 x 12 = 194,436, there were gaps 
in 3248 (i.e. in approx. 1.67% of the months) that were filled by linear regression 
analysis. For that purpose and for each gap in a given rain gauge, R1, a near rain 
gauge, R2, was identified provided that: i) R1 and R2 had at least 10 years of 
simultaneous records in the month where the gap occurred; ii) the correlation 
coefficient, cc, between the two monthly historical series was the highest from 
all the possible nearest stations that verify condition i) and necessarily higher 
than 0.7 ( 0.7cc  ). This procedure allowed filling all the gaps, except in three 
months that were filled with the respective monthly average. 
     The mean annual precipitation map of Fig. 1 was obtained by applying the 
IDW (Inverse Distance Weighting) spatial interpolation technique with exponent 
2 to the mean annual precipitation in the 491 rain gauges that supported the 
study. Authors such as [2, 3] have successfully applied the IDW technique on 
precipitation mapping for Slovakia. Only the historical series, i.e. the existing 
precipitation records prior to the gap filling, were considered to compute the 
mean annual precipitations. 
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     The droughts in the study region were assessed via one of the most popular 
and common drought indexes [4], the Standardized Precipitation Index (SPI), 
developed by [5]. This index was designed to quantify the precipitation deficit at 
different time scales (from 1 to 24 months), which reflect the impact of droughts 
on the different types of reservoirs of fresh water at the watershed level. The SPI 
remaps the precipitation records into a standardized probability distribution 
function so that an index of zero indicates the median precipitation amount, 
while a negative index stands for drought conditions and a positive one, for wet 
conditions [6]. A comprehensive description of the calculation and of the 
advantages of the SPI index can be found in [7–11]. For the adopted time scale 
of 3 months, the computation of the SPI index utilized the Pearson type III 
probability distribution function applied to the series of cumulative precipitation 
in consecutive periods of 3 months (SPI3). The parameters of the distribution 
model were estimated by the L-moments method. Values of SPI3 lower than 
-1.65 represent extreme droughts, between the previous value and -1.28, severe 
droughts, and between this last value and -0.84, moderate droughts [12]. The 
time scale of three months (SPI3) was utilized not only as an example but mainly 
because it reflects short- and medium-term soil moisture conditions and provides 
a seasonal estimation of precipitation, which is quite important in primary 
agricultural regions such as Slovakia,. In fact, approximately half of the country 
is under agricultural production [13]. While the short SPI time scales between 3 
and 6 months may be relevant for agricultural users, hydrologists or water 
managers may be more interested in SPI values between 12 and 24 months. For 
the neighbouring country of Hungary [14] concluded that agricultural drought 
was best replicated by the SPI on a scale of 2–3 months. 
     Based on the values of SPI3 in the 491 rain gauges a drought spatial 
regionalization was done, by applying Principal Component Analysis (PCA). For 
each region thus identified the yearly drought occurrence rates were 
characterized through a new approach, the kernel occurrence rate estimation 
method (KORE) coupled with bootstrap confidence band. Such characterization 
allowed ascertaining the temporal frequency of the regional droughts. The paper 
also includes the presentation of surfaces of precipitation thresholds that can be 
used to identify the droughts at the early stages of their development. 

2 Drought spatial patterns 

The identification of spatial patterns of droughts in the SPI3 field utilized 
principal component analysis (PCA), as previously mentioned. PCA is a 
regionalization technique that can be used to identify homogenous groups of 
variables that experienced similar drought (or wet) conditions during a study 
period [4, 15, 16] and for which can be ascribed a physical meaning [17]. 
     Authors such as [18–23] define the PCA method as a technique that allows 
decomposing the multisite data set of a given variable (e.g. the SPI field) into 
univariate representations of that variable. In that way, the original 
intercorrelated variables can be reduced to a small number of new linearly 
uncorrelated ones that explain most of the total variance [15, 16]. 
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     Considering k variables in a given time period i, ,1iX , ,2iX , …, ,i kX , k 

principle components, PCs, are produced for the same time period, ,1iY , ,2iY , …, 

,i kY , using linear combinations of the first ones, according to: 

,1 11 ,1 12 ,2 1 ,

,2 21 ,1 22 ,2 2 ,

, 1 ,1 2 ,2 ,

i i i k i k

i i i k i k

i k k i k i kk i k

Y a X a X a X

Y a X a X a X

Y a X a X a X

   
    


    







                          (1) 

     In the applications developed the variables ,i kX  refer to the SPI3 series, k is 

equal to the number of rain gauges considered in the analysis (k=491) and i 
represents the length of SPI3 series in each rain gauge (i=33 x 12 - 2 = 394). 
     In the previous combinations the Y values or component scores (PC scores) 
are orthogonal and uncorrelated variables, such that ,1iY  explains most of the 

variance, ,2iY the reminiscent amount of variance, and so on. The coefficients of 

the linear combinations are called ‘loadings’ and represent the weights of the 
original variables in the PCs. 
     PCs extraction can be based on variance/covariance or correlation matrix of 
data with { 11 12 1, , , ka a a } being the first eigenvector and { 1 2, , ,k k kka a a } the 

eigenvector of k order. In the present study the Pearson correlation matrix was 
considered for PCs extraction. 
     Finally the amount of variance explained by the first PC is called the first 
eigenvalue, 1 , the second is 2 , so that 1 2 3 k       , since each 

eigenvalue represents the fraction of the total variance in the original data 
explained by each component [25]. In the present study, the results of PCs were 
evaluated by analysing the eigenvalues (scree plot), the correlations between PCs 
and the original variables (factor loadings) and the percentage of the variance 
explained. To achieve more stable spatial patterns, a rotation of the principal 
components with the Varimax procedure was applied. This procedure provides a 
clearer division between components, since the rotation simplifies the spatial 
structure by isolating regions with similar temporal variations [20]. The patterns 
defined in this way are referred as rotated principal components, RPCs. 
     The extracted principle components, either unrotated, PCs, or rotated, RPCs, 
can be approximately considered representations of the same variable measured 
in the same units as the SPI3 from which they were derived, which was the 
assumption of the drought regionalization approach applied in this study. 

3 Drought spatial patterns 

The analysis of changes in the temporal occurrences of droughts attempts to 
answer the question: regardless of the severity of the drought, i.e. the 
precipitation deficit, how has the distribution of the occurrence of droughts 
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changed over time? To tackle this question, a kernel occurrence rate estimator 
(KORE) may be applied to a historical series of drought occurrences with the 
aim of estimating how the mean number of drought periods in a year,  , 
changes over time, that is, to characterize ( )t  [26–28]. The KORE analysis 

used the methodology detailed by [28] also applied to the RPCs: a Gaussian 
kernel was used, combined with pseudodata generation to reduce boundary 
estimation bias. The analysis focused on the occurrence of severe or worse 
droughts, that is, the occurrence of SPI3 values lower than -1.28. In order to 
analyse the uncertainty associated with the KORE estimates, a pointwise 90% 
bootstrap confidence band was constructed. 
 

4 Results 

4.1 Drought index and drought spatial patterns 

As mentioned, the PCA was applied to the SPI series for the time scale of 3 
months, SPI3, computed for the 491 rain gauges. In order to obtain more 
localized patterns a number of principal components were retained for Varimax 
rotation. Their selection was based on the interpretation of the scree plot [29], on 
the mapping of the factor loadings (raw data) and on the amount of variance 
explained in the original data. 
     The scree plot of Fig. 2 shows that the line stops descending and levels out 
approximately on the fourth PC, which means that three to four principal 
components should be retained. 
 

 

Figure 2: First ten eigenvalues resulting from the PCA applied to the SPI 
computed at 3 months’ time-scale, SPI3. 

     Based on the variance explained by each component, Table 1 shows the first 
ten PCs retained (F1 to F10). It is clear that the first four components explain 
about 80% of the total variance in the original SPI3 series. It is also clear that 
from factors 4 to 5, i.e. F4 to F5, only a small amount of variance explained is 
added (approximately 1%). By mapping the factor loadings, four leading 
components were also suggested, since they fully cover the study area and do not 
overlap, being representatives of the Northern, Southern, Eastern and Western 
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regions. Based on the previous results, the number of components retained to 
rotate was the four main patterns, F1 to F4. The new distribution of the variance 
explained, which was maximized with Varimax rotation, is also represented in 
Table 1. 

Table 1:  Percentage of partial and cumulative variance explained by the 
unrotated and rotated components of PCA, F1 to F10, extracted from 
the SPI3 field. 

Unrotated Rotated Unrotated Rotated

F1 61.9 22.1 61.9 22.1
F2 7.6 19.7 69.5 41.8

F3 7.3 15.0 76.8 56.8
F4 3.2 23.3 80.1 80.1

F5 1.7 81.8
F6 1.3 83.1
F7 1.0 84.0

F8 0.7 84.7
F9 0.6 85.4

F10 0.6 85.9

Partial variance explained (%) Cumulative variance explained (%)

SPI3

PCA

 
 
     The four leading rotated components, RPCs (F1 to F4), of SPI3 that do not 
overlap, are spatially identified in Fig. 3, which represents the mapping of the 
factor loadings (correlations between the RPCs and the SPI3 data field). As 
previously mentioned the spatial interpolation method used was the Inverse 
Distance Weighting available on Arcgis version 10.1 (http://www.esri. 
com/software/arcgis/arcgis-for-desktop). Four sub-regions of drought variability 
characterized by high positive rotated loadings values greater than 0.6 
(statistically significant), covering the entire study area, were identified. Also 
represented in Fig. 3 are the results of the KORE frequency estimator applied to 
each one of the RPCs time series (F1 to F4). As noted above only severe or 
worse droughts, represented by SPI3 values lower than -1.28, were considered in 
the KORE analysis. 
     Fig. 3 shows that, for the SPI3 time scale, the first rotated component (F1) 
highlights an area located in the Western part of Slovakia and it explains nearly 
22% of the total variance (Table 1). The second rotated component (F2) explains 
an area in the Central Northern part of Slovakia (20% of total variance), the third 
(F3) in the Eastern part of the country (15% of total variance), and the fourth 
component (F4) explains an area in Central Southern part (23% of total 
variance). All the rotated components relate mostly positive with the original 
SPI3 series. 
     The four rotated components mean that the variation measured by the SPI3 
among the drought/wet conditions across the entire study region at that time 
scale can be explained adequately by four components, rather than 491 rain 
gauges, which means a clear dimensionality reduction of the SPI3 field. 
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Figure 3: Spatial correlation maps between each RPC and the at-site SPI3 
series (left) and time-dependent occurrence rates of severe drought 
of the 4 RPCs of SPI3 (right). The vertical red ticks indicate the 
points in time when drought events occurred. 

     Regarding the frequency of the drought occurrences, Fig. 3 shows that the 
different regions denote different frequencies of severe droughts although with 
some similarity between Western and Central North regions, in one hand, and 
between Eastern and Central South regions, in the other hand. 
     In fact, the western half of Slovakia experienced an increase in the drought 
occurrences from about 2002 on. Such increase is much more pronounced in the 
Central North region, where the highest rate of annual droughts occurs at the end 
of the analysed period, than in the Western region, where the highest rate of 
droughts was achieved around 1994, being slightly higher than the rates towards 
the present. In the eastern part of Slovakia the drought frequency seems to be 
decreasing towards the present or, at least, it is not as high as it was in the past. 
Except for Central Northern region, all the other regions experienced more 
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frequent droughts in the past, which somehow disagrees with the expected effect 
of the climate change. 

5 Precipitation surfaces for drought recognition 

Despite the widespread use and the advantages of SPI compared with other 
drought indices, the interpretation of the values associated to SPI and drought 
monitoring based on those values are not easy to accomplish, especially because 
they involve standardized values that are difficult to relate with the precipitation 
from which mathematical manipulation they result. 
     Therefore, an additional calculation was developed that gives the SPI values 
that represent drought thresholds back to the precipitation field, thus facilitating 
an adequate interpretation of the meaning of such index and quite easily and 
reliably identifying the drought episodes [28, 30–32]. As a result, monitoring can 
be operationalized as can the subsequent actions that need to be undertaken. 
     For that purpose and for all the 491 rain gauges of Fig. 1, the monthly and the 
cumulative precipitation in 3 consecutive months were estimated for different 
values of SPI3. The previous estimation required the inversion of the SPI 
calculation procedure through the use of a set of widely tested computational 
subroutines [33] that were incorporated in an algorithm developed by the 
authors. 
     Fig. 4 exemplifies the results given by the approach for severe drought, i.e. 
for SPI3=-1.28. Each map shows the spatial distribution of the cumulative 
precipitation in periods of three consecutive months. Obviously, other drought 
categories and time scales can be considered. 
     If the precipitation registered in a given location and period falls below the 
value given by one of the maps for that location and period, then a severe 
drought is occurring. Therefore, each map represents the surface of the minimum 
3-months precipitation below which a severe drought episode is recognized – 
surfaces cumulative precipitation thresholds for recognition of severe droughts. 
     The precipitation surfaces were achieved by applying the IDW (Inverse 
Distance Weighting) spatial interpolation technique with exponent two to the 
precipitation thresholds obtained by the inversion of the SPI3 in the 491 rain 
gauges that supported the study (Fig. 1). The schematic localization of the 
gauges was also included in Fig. 4. 
     Fig. 4 shows that the spatial patterns of the threshold precipitations are poorly 
differentiated across the maps. However, the smooth transition between 
successive maps is easily understandable because each two consecutive maps 
always include a common period of analysis of two months. 
     It is interesting to note that the greater water availability suggested by Fig. 1 
for the Central North Slovakia results in slightly higher precipitation thresholds 
for that region. This is a consequence of the drought index utilized that 
recognizes a drought not by the reduced values of the precipitation themselves 
but by the deviations of the precipitation from average conditions. Accordingly, 
the precipitation thresholds for drought recognition are higher in regions with 
more water availability. 
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Figure 4: Inversion of SPI3=-1.28. Precipitation in 3 consecutive months 
(identified in each map) corresponding to the severe drought 
threshold. 

     Figures like the one exemplified can be obtained for other time scales and 
drought categories. By comparing the registered precipitation in a given location 
and period with the precipitation thresholds for the same location, either for that 
period or for a wider one, obtained by including following months, it is possible 
to conclude not only if a drought is occurring in that location but also how much 
it should rain in the next month/months in order to avoid drought conditions. By 
assigning probabilities to these amounts of rain it is possible to estimate the 
probabilities of recovering from a drought in the next n months. Based on this 
information different decisions can be taken regarding the exploitation, for 
example, of water supply systems. 
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6 Conclusion 

This paper presents a comprehensive drought characterization for the entire 
Slovakia based on equally comprehensive monthly precipitation data. Its results 
allowed identifying four regions that can be considered homogeneous in terms of 
droughts and which denote particular behaviour with regard to the temporal 
frequency of the droughts. A new application of the SPI is proposed aiming at 
recognizing the drought occurrences in the early stages of their development and 
to understand the probability of recovering from droughts thus contributing to 
the sustainable management of the water resources, especially when based on 
artificial reservoirs. 

Acknowledgements 

The research was financed by the Fundação para a Ciência e Tecnologia, FCT, 
by through the project Proc. 441.00 Eslováquia (Transnational Cooperation. 
Scientific Cooperation Agreement between Portugal and Slovakia) – SRDA SK-
PT-0001-012. The authors thank the Slovak Hydrometeorological Institute for 
providing the precipitation data. 

References 

[1] Tallaksen, L.M., Van Lanen, H.A., Hydrological drought: processes and 
estimation methods for streamflow and groundwater (Vol. 48), Elsevier 
Science Limited, 2004. 

[2] Szolgay, J., Parajka, J., Kohnová S., Hlavčová K., Comparison of mapping 
approaches of design annual maximum daily precipitation, Atmospheric 
Research Journal 92, 289–307, 2009. 

[3] Kohnová, S., Gaál, L., Parajka, J., Szolgay, J. and Hlavčová, K., Mapping 
Precipitation Quantiles by means of pooling approaches at ungauged sites 
in Slovakia, article published on behalf of the Slovak Grant Agency 
VEGA under Project No. 1/0103/10 and the Slovak Research and 
Development Agency under Contract No. APVV-0443-07, 2010. 

[4] Santos, J.F., Pulido-Calvo, I., Portela, M.M., Spatial and temporal 
variability of droughts in Portugal, Water Resources Research, 46, 
W03503, doi: 10.1029/2009WR008071, 2010. 

[5] McKee, T.B., Doesken, N.J., Kleist, J., The relationship of drought 
frequency and duration to time scales, Proceedings of the 8th Conference 
on Applied Climatology, American Meteorology Society, 179–184, 1993. 

[6] Santos, J.F., Portela, M.M., Pulido-Calvo I., Regional frequency analysis 
of droughts in Portugal, Water Resources Management, 25(14), 3537–
3558, doi: 10.1007/s11269-0119869-z, 2011. 

[7] Edwards, D.C., McKee, T.B., Characteristics of 20th century drought in 
the United States at multiple time scales, Climatology Report 97–2, 
Department of Atmospheric Science, Colorado State University, Fort 
Collins, Colorado, 1997. 

 WIT Transactions on Ecology and The Environment, Vol 197,
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2015 WIT Press

246  River Basin Management VIII



[8] Guttman, N.B., Comparing the Palmer Drought Index and the standardized 
precipitation index, Journal of the American Water Resources Association 
(JAWRA) 34, 113–121, 1998. 

[9] Guttman, N.B., Accepting the Standardized Precipitation Index: A 
calculation algorithm, Journal of the American Water Resources 
Association (JAWRA) 35 (2), 311–322, 1999. 

[10] Hayes, M., Wilhite, D.A., Svoboda, M., Vanyarkho, O., Monitoring the 
1996 drought using the standardized precipitation index, Bulletin of the 
American Meteorological Society, 80, 429–438, 1999. 

[11] Lloyd-Hughes, B., Saunders, M.A., European drought climatology and 
prediction using the Standardized Precipitation Index (SPI), 8.11, 13th 
Conference on Applied Meteorology, 2002. 

[12] Agnew, C.T., Using the SPI to identify drought, Drought Network News, 
12, 6–12, 2000. 

[13] FAO Database 2006 (website http://apps.fao.org/). 
[14] Szalai S, Szinell C., Comparison of two drought indices for drought 

monitoring in Hungary – a case study. In Drought and Drought Mitigation 
in Europe, Vogt JV, Somma F (eds). Kluwer: Dordrecht; 161–166, 2000. 

[15] Bonaccorso B., Bordi I., Cancelliere A., Rossi G., Sutera A., Spatial 
variability of drought: An analysis of the SPI in Sicily, Water Resources 
Management, 17, 273–296, doi: 10.1023/A:1024716530289, 2003. 

[16] Vicente-Serrano, S.M., González-Hidalgo, J.S., Luis, M., Raventós, J., 
Drought patterns in the Mediterranean area: The Valencia region (eastern 
Spain), Climate Research, 26, 5–15, doi 10.3354/cr026005, 2004. 

[17] Ehrendorfer, M., A regionalization of Austria's precipitation climate using 
principal component analysis, International Journal of Climatology, 7: 
71-89, doi: 10.1002/joc.3370070107, 1987. 

[18] Tipping, M.E., Bishop, C.M., Probabilistic principal component analysis, 
Journal of the Royal Statistical Society, Series B, 61(3), 611–622, doi 
10.1111/1467-9868.00196, 1999. 

[19] Jolliffe, I. T. (Ed.), Principal Component Analysis, 2nd ed., 502 pp., 
Springer, New York, 2002. 

[20] Kahya, E., Demirel, M.C., Beg, O.A., Hydrologic homogeneous regions 
using monthly streamflow in Turkey, Earth Sciences Research Journal, 
12(2), 181–193, 2008. 

[21] Kahya, E., Kalayc, S., Piechota, T.C., Streamflow regionalization: Case 
study of Turkey, Journal of Hydrologic Engineering, 13(4), 205–214, doi: 
10.1061/(ASCE)1084-0699(2008)13:4(205), 2008. 

[22] Westra, S., Brown, C., Lall, U., Sharma, A., Modeling multivariable 
hydrological series: Principal component analysis or independent 
component analysis? Water Resources Research, Vol. 43, W06429, doi: 
10.1029/ 2006WR005617, 2007. 

[23] Singh, P.K., Kumar, V., Purohit, R.C., Kothari, M., Dashora, P.K., 
Application of principal component analysis in grouping geomorphic 
parameters for hydrologic modeling, Water Resources Management, 23, 
325–339, doi: 10.1007/s11269-008-9277-1, 2009. 

 WIT Transactions on Ecology and The Environment, Vol 197,
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2015 WIT Press

River Basin Management VIII  247



[24] Rencher, A.C. (Ed.), Multivariate statistical inference and applications, 
John Wiley, New York, 1998. 

[25] Bordi, I., Sutera, A., Fifty years of precipitation: Some spatially remote 
teleconnections, Water Resources Management, 15: 247–280, doi 
10.1023/A:1013353822381, 2001. 

[26] Mudelsee, M., Borngen, M., Tetzlaff, G., Grunewald, U., No upward 
trends in the occurrence of extreme floods in central Europe. Nature 425: 
166–169, 2003. 

[27] Silva, A.T., Portela, M.M., Naghettini, M., Nonstationarities in the 
occurrence rates of flood events in Portuguese watersheds. Hydrology and 
Earth System Sciences, 16(1): 241–254, 2012. 

[28] Portela, M. M., Santos, J. F., Silva, A. T., Benitez, J. B., Frank, C., 
Reichert, J. M., Drought analysis in southern Paraguay, Brazil and 
northern Argentina: regionalization, occurrence rate and precipitation 
thresholds. Hydrology Research, doi: 10.2166/nh.2014.074, 2014. 

[29] Bryant, F. B., Yarnold, P. R., Principal-components analysis and 
confirmatory factor analysis, in L. G. Grimm & P. R. Yarnold (Eds.), 
Reading and understanding multivariate statistics, Washington, DC: 
American Psychological Association, 1995. 

[30] Portela, M.M., Santos, J.F., Naghettini, M., Matos, J.P., Silva, A.T., 
Superfícies de limiares de precipitação para identificação de secas em 
Portugal continental: uma aplicação complementar do Índice de 
Precipitação Padronizada, SPI, Recursos Hídricos, 33(2): 5–23, 
Associação Portuguesa dos Recursos Hídricos, APRH), Lisboa, doi 
10.5894/rh33n2-1 (http://www.aprh.pt/rh/v33n2.html), 2012. 

[31] Santos, J.F.; Portela, M.M.; Naghettini, M.; Matos, J.P.; Silva, A.T., 
Precipitation thresholds for drought recognition: a complementary use of 
the SPI. 7th International Conference on River Basin Management 
including all aspects of Hydrology, Ecology, Environmental Management, 
Flood Plains and Wetlands, RBM13, 3–14, Wessex Institute, New Forest, 
UK, ISBN:978-1-84564-712-4, ISSN:1746-448X, 2013. 

[32] Portela, M.M., Silva, A.T., Santos, J.F., Benitez, J.B., Frank, C., Reicher, 
J.M., Chapter 3. Analysis of Temporal Variability of Droughts in Southern 
Paraguay and Northern Argentina (1961 2011), in W. LEAL FILHO et al. 
(eds.), International perspectives on climate change, Climate Change 
Management, doi 10.1007/978-3-319-04489-7, Springer International 
Publishing Switzerland, 2014. 

[33] Hosking, J.R.M., Fortran code written for inclusion in IBM research report 
RC20525, Fortran routines for use with method of L-moments, IBM 
Research Division, T.J. Watson Research Center, New York, USA, 1996. 

 WIT Transactions on Ecology and The Environment, Vol 197,
 www.witpress.com, ISSN 1743-3541 (on-line) 

© 2015 WIT Press

248  River Basin Management VIII




