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Abstract 

Fugitive dust emissions from soil are thought to constitute a large fraction of the 
PM10 and PM2.5 inventory in California's San Joaquin Valley (SJV) and other 
western air basins, especially during dry periods.  The major sources of these 
emissions are paved and unpaved roads, construction sites, windblown dust, and 
agricultural activities.  Furthermore, PM10 and PM2.5 are considered to be among 
the most harmful of all air pollutants.  When inhaled these particles evade natural 
defenses of the respiratory system and lodge deep in the lungs causing serious 
health problems. Some heavy metals in small particles have the tendency to 
donate electrons and to form basic oxides. Biologically, many metals are 
essential to living systems and are involved in a variety of cellular, 
physiological, and structural functions. But at high doses, many metals become 
toxic. The route of exposure may affect the dose and the site where the metal 
concentrates, and thus the observed toxic effect. 
     In California’s San Joaquin Valley, agricultural operations are highly 
complex and potentially significant sources of PM10 and PM2.5, especially during 
late summer and fall. A series of experiments was conducted to measure PM10 
and PM2.5 emissions with traditional array sampling from agricultural operations 
in San Joaquin Valley. The elemental analysis of PM10 and PM2.5 collected in the 
field samples was conducted using Proton Induced X-Ray Emissions (PIXE), 
Proton Elastic Scattering Analysis (PESA) and X-Ray Fluorescence (XRF) 
analytical techniques available in our laboratory.   
     The composition of PM10 dust collected downwind of agricultural operations 
is different from the composition of the PM2.5 dust collected at the same time. 
The smaller particles are enriched in sulphur and in heavy metals.  
Keywords:  PM10, PM2.5, fugitive dust, agriculture, particle speciation, elemental 
composition. 
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1 Introduction 

California’s San Joaquin Valley is one of the most productive agricultural 
regions in the United States.  The dominance of fugitive dust from mobile and 
agricultural sources in the fall has lead to the hypothesis that agricultural 
operations may contribute significantly to the exceedance of PM10 concentrations 
in the valley.  
     Carvacho, et al. [1, 2] documented a strong relationship between soil texture 
as measured by the amount of sand, silt, and clay in the soil and the amount of 
PM10 and PM2.5 that could be generated from it (the PM10 or PM2.5 Index). They 
also showed that the PM2.5 that could be generated from a soil was 
approximately 10% of the PM10 that could be generated from the same soil. 
Carvacho, et al. [3] examined the composition of PM10 and PM2.5 from 
resuspended soil samples collected in the San Joaquin Valley. Finally, Carvacho 
et al. [4] documented the presence of heavy metals in PM2.5 that may be 
hazardous to human health. 
     In this study, we document the elemental composition of the ambient PM10 
and PM2.5 dust collected downwind of agricultural operations on a variety of soil 
textures, and the elemental enrichment of metals and other elements in PM2.5 
versus PM10 dust.  

2 Materials and methods 

All samples were collected on a single farm near Stratford, CA between July 26 
and September 11, 1999. All measurements were made under actual field 
conditions. A combination of upwind/downwind source isolation and vertical 
profiling were used to quantify PM10 and PM2.5 concentrations, as described in 
Holmén et al. [5], and shown in Figure 1. We collected ambient PM10 and PM2.5 
on Teflon filters using IMPROVE samplers [6, 7] for gravimetric and elemental 
analyses. 
     The aerosol mass concentrations were calculated using the gravimetric 
method. The elemental composition (22 elements) was determined using three 
analytical methods: PIXE (Proton Induced X-ray Emissions) for elements with 
atomic mass less than Fe, XRF (X-Ray Fluorescence) for Fe and above, and 
PESA (Proton Elastic Scattering Analysis) for hydrogen. Further details of these 
techniques are described elsewhere [7–9]. PIXE and PESA were conducted using 
4.5 MeV protons produced by the 76” cyclotron at the Crocker Nuclear 
Laboratory of the University of California in Davis. XRF analysis used a General 
Electric grounded anode diffraction type X-ray tube with molybdenum anode.  

2.1 Composite variables  

A SOIL parameter was calculated using the IMPROVE formula by adding the 
concentrations of five major soil elements in their typical oxide form [10] as 
shown in eqn (1). 

[ ] [ ] [ ] [ ] [ ]TiFeCaSiAlSOIL *94.1*42.2*63.1*49.2*20.2 ++++=  (1) 
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The hydrogen concentration is useful as an estimate of organic mass. Sulphur 
was used to calculate the sulphate aerosol component, which is assumed to be 
ammonium sulphate. Organic mass and sulphate were calculated following the 
IMPROVE formulas [10, 11], shown in eqns (2) and (3). 
 

( ) [ ] [ ]( )SHHbyOrganic *25.0*75.13 −=                           (2) 
[ ]SSO *125.44 ==

                                          (3) 
 

 

Figure 1: Photograph of downwind sampling array and meteorological 
measurement tower in a land preparation field study. 

3 Results and discussion 

Figure 2 shows the mass concentration and fractional composition of the PM10 
dust collected from ambient samples downwind of agricultural operations. For 
all the soil types examined, mineral soil (i.e. the SOIL parameter) accounts for 
77% to 87% of the PM10 mass in downwind ambient samples. Organic matter 
comprises 12% to 22% of the PM10 mass for all soil types, with sulphate, metals, 
and other elements accounting for 1% or less. 
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Figure 3 shows the mass concentration and fractional composition of the 
PM2.5 dust collected from ambient samples downwind of agricultural operations. 
The PM2.5 mass is 6% to 7% of the PM10 mass for all soil types except loam, 
where it is 12% of the PM10 mass. Mineral soil accounts for 37% to 66% of the 
PM2.5 mass for all soil types. Organic matter accounts for 32% to 41% of the 
PM2.5 mass, and sulphate is 2% to 21%. Metals and other elements account for 
3% or less of PM2.5 mass.  
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Figure 2: Concentration and composition of PM10 soil dust from ambient 
samples. 

PM2.5 Composition
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Figure 3: Concentration and composition of PM2.5 soil dust from ambient 
samples. 

In general, the elemental composition of the ambient samples collected 
during agricultural operations suggests the dust is mostly local soil. Exceptions 
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are for sulphate, metals, and organic mass. This is possibly because the ambient 
samples contain sulphate and metals from San Joaquin Valley air that are not 
present, or are present in very small amounts, in the underlying soil. The 
contribution from ambient background particulate matter was subtracted from 
the downwind samples, though, so the contribution from agricultural equipment 
may be a major source of these components.  

We calculated enrichment factors (Table 1) relative to silicon using eqn (4) 
for elements in PM2.5 compared to elements in PM10 samples.  

[ ] [ ]( )
[ ] [ ]( )1010

5.25.2

SiE
SiEEF =                                          (4) 

In eqn (4) EF is the enrichment factor, [Ex] is the elemental concentration in the 
PM2.5 or PM10 fraction, and [Six] is the silicon concentration in the PM2.5 or PM10 
fraction.  

Table 1:  Enrichment factors for elements in PM2.5 versus PM10 relative to 
silicon. 

Element Silty Clay 
Loam 

Clay 
Loam 

Sandy 
Loam 

Sandy 
Clay Loam 

Loam Average 
all soils 

H 4.1 3.8 3.7 3.6 7.1 4.5 
Al 1.1 1.1 1.0 0.8 0.8 1.0 
Si 1.0 1.0 1.0 1.0 1.0 1.0 

Ca 2.4 1.7 2.1 1.7 1.8 2.0 
Ti 0.5 1.7 1.5 1.6 1.5 1.3 
Fe 1.3 1.3 1.2 1.4 1.4 1.3 
S 36.5 11.5 13.1 13.0 17.6 18.4 
V 40.0 16.3 4.0 5.7 8.1 14.8 

Cr 8.9 12.4 18.3 4.3 11.2 11.0 
Mn 5.1 3.8 2.4 2.1 2.0 3.1 
Ni 9.3 8.5 7.7 6.5 7.2 7.8 
Cu 46.1 21.8 43.9 14.3 12.4 27.7 
Zn 15.4 8.0 10.7 9.4 3.5 9.4 
Ga 16.2 11.6 13.2 9.6 12.1 12.6 
Hg 17.5 11.8 15.1 9.8 7.8 12.4 
As 6.9 7.7 4.9 3.8 13.1 7.3 
Pb 17.4 16.4 24.6 11.7 4.4 14.9 
Se 17.6 13.7 16.1 11.3 11.4 14.0 
Br 17.9 15.4 28.7 5.3 17.4 16.9 
Rb 2.0 2.0 1.7 1.3 2.7 1.9 
Sr 1.6 1.9 1.4 1.2 1.3 1.5 

 
     Table 1 shows the enrichment factors for all five soils and for the average of 
all soils. The enrichment factors are also shown graphically in Figure 4. Four of 
the five soil elements (Al, Si, Ti, and Fe) are very similar in the PM2.5 and PM10 
fractions for all soil types. Calcium is enriched in the PM2.5 fraction by a factor 
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of two. Rubidium and strontium are also slightly enriched (by less than a factor 
of two) in the PM2.5 fraction. Hydrogen, manganese, nickel, and arsenic are 
enriched by factors of 3-8. Other metals, including V, Cr, Ga, Hg, Pb, Se, and Br 
are enriched by factors of 11 to 17 on average, with a wide variation for 
individual soil types. Sulphur is enriched by a factor of 18 on average with a 
range of 11.5 to 36.5. Finally, copper is enriched by a factor of nearly 28 on 
average, with a range of 12 to 46 for different soil types. It’s not clear whether 
the source of these metals is the underlying soil, background PM2.5 
concentrations in the San Joaquin Valley atmosphere, or the emissions of the 
agricultural equipment used in the operations being sampled. The background 
concentrations were subtracted from these measurements, though, so it’s unlikely 
that ambient levels are the source. 
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Figure 4: Enrichment factors, relative to silicon, of elements in PM2.5 versus 
PM10. 

4 Conclusions 

The composition of PM10 soil dust collected downwind of agricultural operations 
is primarily underlying mineral soil with a small fraction representing organic 
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matter. The PM10 fraction is approximately 80% mineral soil (as calculated by 
the IMPROVE equation) and 20% organic matter, with only minor amounts of 
sulphate and metals. 
     The composition of PM2.5 soil dust collected downwind of agricultural 
operations is enriched in sulphur and heavy metals as compared to the PM10 
fraction. The PM2.5 mass concentration is 6-7% of the PM10 concentration for 
operations on most soils, but is higher (12%) for operations on loamy soil. The 
PM2.5 composition is more variable than the PM10 composition, with 37-66% 
mineral soil, 32-41% organic matter, up to 20% sulphate and less than 1% 
metals. 
     Sulphate and metals are enriched in the PM2.5 fraction compared to the PM10 
fraction by factors that vary depending on the soil type and test conditions. 
Calcium is enriched by approximately a factor of two, while rubidium and 
strontium are enriched by less than a factor of two. Other metals, particularly V, 
Cr, Cu, Zn, Ga, Hg, Pb, Se, and Br are enriched by about an order of magnitude 
in the PM2.5 fraction relative to the PM10 fraction. Sulphur is enriched by a factor 
or 11-36 (18.4 on average). 
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