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Abstract

This paper presents a two-stage multimodal optimization algorithm and its

application to structural optimizations. The first stage of the two-stage

algorithm serves to identify local optimum candidates which are defined as the

best sampled design in each valley containing a local optimum from a number

of sampled designs by using topographical identification techniques. The

second stage of the optimization algorithm involves a number of local searches

using the local optimum candidates as initial designs. A unique crystal growth

approach is proposed to perform systematic identification of the local optimum

candidates. This topographical multimodal optimization algorithm is applied to

one illustrative structural optimization problem and comparison are made to

results obtained by an existing topographical algorithm.

1 Introduction

Global optimization seeks the global optimum in problems with a nonconvex

design space. Most practical engineering optimization problems cannot be

proved to be unimodal and therefore it is important to use global optimization

strategies to handle such engineering problems so as to attain a satisfactory

solution. Global optimization methods can be classified into two major groups:
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352 Computer Aided Optimum Design of Structures V

deterministic methods and probabilistic methods. Extensive description on the

theories and characteristics of principal global optimization methods can be

found in the literature [1,2]. Deterministic methods aim to obtain the global

optimum with guaranteed accuracy. Since these methods are generally based

on restrictive assumptions on the objective function, and are often only

applicable to unconstrained problems, they are not practical to most

engineering multimodal optimization problems.

Probabilistic methods basically provide no guarantee in the attainment of

the global optimal design with limited computing effort. A global solution of a

better quality can be generally achieved by investing more computing effort.

Two important approaches in probabilistic methods are random search methods

and clustering methods.

Random search methods include pure random search, singlestart and

multistart. A pure random search generates a sequence of randomly distributed

designs and at the end of the search the best design obtained is regarded as the

global solution. The method is inefficient because the design distribution

density is equal in promising and unpromising regions. Local refinement is also

not performed in the pure random search.

In singlestart, a local search is executed from the best of a number of

evenly-distributed sampled designs, and the local search results in the global

solution. The reliability of this method to attain the global optimum is quite

low when the covering of the design space is not sufficiently dense. In

multistart, a local search is performed from each sampled design in the space

and the best optimum located is regarded as the global solution. For a small

number of sampled designs, the confidence level of obtaining the global

optimum is not high. If a large number of sampled designs are used, precious

computing resource may be wasted because many local searches lead to

identical optima. These random search methods are simple in algorithm and

thus often used by engineers who are not experts on global optimization.

Modification on the random search schemes for improved efficiency is

therefore highly desired in engineering design practice.

Clustering methods aim to perform only one local search in each

optimum-containing valley and thus prevent redetermination of already known

local optima. In clustering methods, four fundamental steps are sampling,

concentrating designs, clustering, and local search. First, a number of sampled
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Computer Aided Optimum Design of Structures V 353

designs are generated in the design space. Discarding a percentage of designs

with higher objective function values and a few iterations of local search are

applied to remaining designs to create the concentration towards regions of

attraction. Cluster analysis techniques based on design distribution densities

determine design clusters. From the best design of each design cluster, a local

search is executed. A satisfactory performance of clustering methods relies on

proper identification of optimum-containing valleys from sampled designs.

Since traditional cluster analysis techniques are solely based on density

information of designs distribution, two drawbacks remain. First, if a few steps

of local searches fail to create proper concentrations on optimum-containing

valleys, cluster analyses will result in incorrect determination on clusters which

consequently lead to redundant identical local optima or failure to locate some

optima. Secondly, a few steps of local search on each of remaining sampled

designs creates additional computing cost which makes the algorithm less

efficient.

2 Topographical Identification Method

Torn and Viitanen proposed a topographical global optimization method using

pre-sampled designs in 1994 [3]. Being a modification on the clustering

method, the topographical approach uses both objective function values and

location coordinates of pre-sampled designs to identify near-optimum designs

in each optimum-containing valley. A threshold distance approach is used in

their work to create a most even distribution of sampled designs in the design

space. Eliminating executions of a few steps of local search on 'good' sampled

designs in classical clustering methods, topographical algorithm can invest

computing effort in distributing more pre-sampled designs. Based on a well

covering of pre-sampled designs, more accurate identification on near-optimum

designs in each valley is achieved with increased efficiency. Torn and

Viitanen' topographical algorithm is briefly described as follow steps:

l)Sampler

1.1 Randomly generate a design.

1.2 Keep the design if the design is not located within a threshold

distance to any design already accepted.
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354 Computer Aided Optimum Design of Structures V

1.3 Continue 1.1 & 1.2 until all pre-sampled designs are attained.

2)Topography Construction

2.1 For each design, compare its objective function value to that of k

nearest designs to it.

2.2 During the comparisons, any design having a worse objective

function value is marked.

2.3 When the process defined in 2.1 & 2.2 is completed for all pre-

sampled designs, unmarked designs are regarded as near-optimum

designs.

3)Local Search

3.1 A local search is executed from each near-optimum design.

3.2 The best local optimum thus obtained is regarded as the global

optimum.

Being simple in algorithm and efficient in a number of test problems [3],

the topographical global optimization method using pre-sampled designs still

has a drawback. The proper value of the critical parameter k is problem

dependent and is very difficult to define. To be more elaborating, a suitable

value of A: may vary in different domains of the design space. This situation can

be described by using the sampled designs in a one-dimensional function as

shown in Figure 1.

The function has three local minima and the goal is to identify

exclusively the best design in each valley from 14 designs on it. For varied

values of k, near-optimum designs identified by Torn and Viitanen' algorithm

are listed in Table 1.

Table 1. Near-optimum designs identified by varied k values

k value
Near-optimum

designs

1
B,F,G,I,
L,M

2
B,F,G,
M

3
B,F,G,
M

4
B,G,M

5
B,G,M

6
G,M

7
G

It is noted that near-optimum identification is all correct only in the cases,

k=4 and 6=5. Other k values result in either redundant local searches (&<3)

based on too many near-optimum designs or failures to attain the local (&=6) or

even the global optimum (&>7). The primary reason for improper identification
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Computer Aided Optimum Design of Structures V 355

is the comparison of function values either between a design and another

design not located in the same valley or between a design and a neighboring

design of wrong direction. For example, as k is less than 4, F design compares

its function value only with that of E, D, and C designs and with a better

function value F design is regarded as a near-optimum. There is no comparison

between F and G designs at this stage simply because G design is farther away

from F design than £, D, and C designs. As k is greater than 5, B design is

compared with G design which is located in another valley, and a proper near-

optimum design thus fails to be identified. The observation showed that Torn

and Viitanen' topographical algorithm using pre-sampled designs was effective

if a proper value of k was selected. It is difficult to define a proper k value

which is influenced by many factors such as the number and distribution

pattern of sampled designs, and the contours of the design space. Furthermore,

the situation of an algorithm demanding proper selections on critical

parameters often requires hidden computing cost spent in multiple executions

of the algorithm with varied parameter values.

3 Crystal Growth Approach Near-Optimum Identification

The crystal growth approach near-optimum identification techniques proposed

in this paper are originated from the questions arose in the previous example as

shown in Figure 1. How to implement an algorithm which will demand

comparisons between designs which are supposed to compare and not demand

comparisons between designs which are not supposed to? Then it comes out as

the answer. The proposed algorithm for solving the problem shown in Figure 1

is as follows:

The one-dimensional version

1) Rank all designs according to objective function values.

2) Using the best design as the core, perform comparison to its nearest design.

(G is the core, H is the nearest)

3) Compare the next nearest design from the core, to its nearest design among

all designs having done comparison. (/ is second nearest to G, and 7 is

compared to H because H is closer to I than G is)

4) Continue the process until all designs are compared.
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356 Computer Aided Optimum Design of Structures V

F(x)

Figure 1. 1-D multimodal function. Figure 2. Crystal growth approach.

At the end of the process, only B, G and M are three non-inferior designs

in comparisons, and they become near-optimum designs. In order to suit for

problems of multiple dimensions, the algorithm is modified to as follows:

Crystal growth near-optimum identification algorithm

1) Rank all designs according to objective function values. The best design is

the first core.

2) Bond the core, and its two nearest designs form a triangular set.

Comparisons are made between members of the triangular set.

3) Bond the next nearest design from the core, to its nearest two designs

among all designs having been bonded into triangular sets, to form a new

triangular set.

4) Continue the crystal growth process until all designs are bonded; Any

design is marked if its function value is inferior than that of any given

design which it has compared to.

5) Repeat Steps 2-4 by using the next best unmarked design as the new core

until all unmarked designs have been used as cores.

The algorithm can be illustrated in the example as shown in Figure 2.

There are a total of 10 designs in the two dimensional case. The objective

function value of each design is used as the index for the design. Design 1 (DJ

has the lowest objective function value and is thus used as the first core. D% and

DIQ are its two nearest designs and they are bonded into DI and form a
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Computer Aided Optimum Design of Structures V 357

triangular set. Obviously D^ and D^ will be marked due to inferior function

values. DS is the next design closest to D, and is bonded to D, and D$. In

similar processes, D?, D̂ , D̂ , D̂ ,Dg ,D2 are sequential bonded and leave D,, D̂

and 82 unmarked. Although Dj, and 82 look promising as near-optimum

designs, D, is an obvious miss-judgment. Treat the second best unmarked

design D2 as the new core and repeat the process to bond all other designs.

When D, is the design to be bonded to D^ and D& which are two nearest

designs among D2, D^, D^, D?, and Dg, already bonded at this moment, D^ is

marked due to its inferior value than D^. Whole crystal growth algorithm is

completed when remaining four designs are bonded without any new outcome.

Dj andD2 are deemed as near-optimum designs by this algorithm.

Many experiments have been performed on different number of designs

for a new design to be bonded to. Results showed the number, two, provided

very stable and satisfactory identification outcome with a highest computing

efficiency in problems of varied dimensionality and number of local optima.

Therefore, the crystal growth approach is considered as a parameter-free

algorithm.

4 Two-stage Multimodal Optimization Algorithm

The crystal growth near-optimum identification techniques are used in a two-

stage multimodal optimization algorithm using pre-sampled designs such as

previously described Torn and Viitanen' topographical algorithm. Except that

the Torn and Viitanen' topography construction algorithm is replaced by

crystal growth algorithm, the sampler and the local search steps are identical.

5 Illustrative Problem

The illustrative nonconvex structural optimization problem involves a two

beam grillage structure subjected to distributed static loads as shown in Figure

3. The design variables are the cross sectional areas of each beam A\. The

moments of inertia // and sectional modulus Z/ are related to the cross sectional

areas AI by empirical relations obtained by Clarkson [4] as follows:
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358 Computer Aided Optimum Design of Structures V
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Figure 3. Two-beam grillage. Figure 4. Disjoint design space.

7, = 1.007(X / 1.48)2.65

Z,= (4/1.48)
1.82

(1)

(2)

The beams were sized for minimum weight with stress constraints at the

center point and at the location of maximum bending moment along the span to

below allowable stresses 20,000 Ib/in". Three optima exist in the nonconvex

design space resulted from nonlinear constraint boundaries as shown in Figure

4. Using uniform threshold sampling, 25 designs were sampled in each of 5

experiments conducted with different random number seeds. The crystal

growth identification algorithm and Torn and Viitanen' topographical

algorithm with varied k values (£=2,3,4,5,6) were used to identify near-

optimum designs and then local searches were followed. In order to compare

crystal growth topographical algorithm to a multistart algorithm without near-

optimum identification techniques, 3 to 6 evenly distributed initial designs

were generated in four experiments and a local search was performed from

each initial design. All above-mentioned numerical experiments were

conducted five times so as to reduce sampling errors. Average results of all

tests are listed in Table 2. Due to a large attraction region for the global optimal

design in this problem, all experiments attained the global optimum. The

second best local optimal design was attained in 80% of experiments using
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Computer Aided Optimum Design of Structures V 359

topographical algorithms while the multistart method located this optimum

from 60% to 80% of experiments. The third local optimum was attained by

varied chances for different approaches. The ratio between the function

evaluations and the number of distinct optima attained

represents the efficiency for an algorithm to capture optima. A good

multimodal algorithm should not only spend less function evaluations for

locating each optimum, but also be able to capture more optima. The above-

mentioned efficiency ratio to be divided by the number of distinct optima

attained by the specific algorithm will give a good overall performance index

for each multimodal algorithm. It is noted that a lower performance index

represents a better multimodal algorithm by this definition. The crystal growth

approach with adaptive stopping criteria has an excellent performance index

11.7 in this problem. Although Torn and Viitanen' topographical algorithm

with h=4 has an overall best performance index, 11.1, all & values presented an

average of 13.7 performance index. For an algorithm requesting a definition of

a critical parameter k, the use of an average performance index for this

algorithm should be more than reasonable. The multistart which is already

aided by even initial designs distributions obtained by using a maximum

threshold distance have worst performance indices with an average 20.7.

Table 2. Comparison of different multimodal optimization algorithms

optimum 1
(global)

optimum 2

optimum 3

distinct optima
attained
function

evaluations
needed

performance
index

Crystal
growth
method
100%

80%

80%

2.6

79.2

11.7

Torn and Viitanen' algorithm
k=2

100%

80%

80%

2.8

134.4

17.1

k=3

10096

80%

80%

2.6

98.4

14.6

k=4

10094

80%

80%

2.6

75.0

11.1

k=5

10094

80%

60%

2.4

70.8

12.3

k=6

100%

80%

40%

2.2

61.6

12.7

Multistart
3 pts

100%

60%

60%

2.2

87.6

18.1

4 pts

100%

60%

60%

2.2

77.6

16.0

5 pts

100%

60%

80%

2.4

149.8

26.0

6 pts

100%

80%

100%

2.8

177.0

22.6
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360 Computer Aided Optimum Design of Structures V

6 Concluding Remarks

A crystal growth approach near-optimum identification algorithm was used in

topographical multimodal optimization using pre-sampled designs. Preliminary

results showed that crystal growth approach near-optimum identification

algorithm provided a more stable and effective near-optimum identification

output than Torn and Viitanen' topographical algorithm and classical multistart

methods. The applicability for these topographical multimodal optimization

techniques in problems of a large dimensionality and a large number of local

optima calls for further investigation.

It is noted that the crystal growth approach near-optimum identification

algorithm can also be used in any stage of a multimodal optimization method

to identify near-optimum designs by using all designs previously evaluated

(computing resource conservation) so that heuristic responses can be made to

speed up the optimization.

Acknowledgment

This research was supported by the National Science Council of Republic of

China under the grant NSC86-2212-E-011-025.

References

1. Horst, R. & Tuy, H. Global Optimization: Deterministic Approaches,

Springer-Verlag, Berlin, 1992.

2. Torn, A. & Zilinskas, A. Global Optimization, in Lecture Notes in

Computer Science 350, (ed G. Goos & J. Hartmanis), Springer-Verlag,

Berlin, 1989.

3. Torn, A. & Viitanen, S., Topographical Global Optimization Using Pre-

Sampled Points, Journal of Global Optimization, 1994, 5, 267-276.

4. Clarkson, J. The Elastic Analysis of Flat Grillages, Cambridge

University Press, Cambridge, 1965.

                                                             Transactions on the Built Environment vol 28, © 1997 WIT Press, www.witpress.com, ISSN 1743-3509 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 


