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ABSTRACT

The present paper describes the capabilities of a modern design optimization tool based
on the method of genetic search. This stochastic search technique offers a significantly
increased probability of locating the global optimum in a design space with muitiple
relative optima. The program includes an advanced search technique referred to as
directed crossover wherein bit positions on the design strings that offer a higher gain
during crossover are assigned higher probabilities of selection as crossover sites.
Directed crossover is based on bitwise generational gradient to identify critical bit
positions on the string, and provides for reduced schema disruption. This optimization
code also includes a multistage genetic search plan which is useful in problems where
the design space is large. Multistage search involves successive refinement in the
precision with which design variables are represented in the genetic search process.
Also included as options in this program are other advanced techniques such as shanng
function implementation, mating restrictions, and automatic encoding and decoding of
the design variables.

INTRODUCTION

Genetic search based optimization techniques have received recent attention in
mechanical and structural optimization problems, and have been proven useful in
optimization problems with nonconvex and disjoint design spaces. The approach is
applicable to problems with a mix of continuous. discrete. and integer design variables.
Genetic algorithms. first proposed by John Holland in 1975 [1], have been adapted for
a large number of applications in different disciplines. These methods have their
philosophical basis in Darwin's theory of survival of the fittest. and belong to a general
category of stochastic search methods. A set of design alternatives which represcnt a
generation in the natural analoque are allowed to reproduce and cross among
themselves, with bias allocated to the most fit members of the population.
Combinations of the most desirable characteristics of the mating pairs of the population
result in progenies that are more fit than either of the parents. If the measure which
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indicates the fitness of the population is also the desired goal of the design process,
successive generations will result in better objective function values. One characteristic
of the genetic search based optimization method is that gradients of objective and
constraint functions are not required. This helps in preventing the search from being
trapped in a region containing only a local optimum. The application of genetic search
in problems with disjoint and nonconvex design spaces is presented in Ref. 2. Genetic
algonithms use a chromosome string like binary string to represent an actual design.
Irrespective of the type of design variables included in the problem, the design space is
a combination of discrete points, each representing an actual design. Genetic search
can, therefore, be used to solve design problems with a mix of integer, discrete and
continuous design vanables. The application of genetic search in mechanical and
structural optimization problems with a mix of integer, discrete, and continuous design
vanables is presented in Reference 3.

A number of implementations of the genetic search approach (GENESIS [4] being
one example), each equipped with the standard genetic transformation operators, have
been developed. While some of these implementations include convenient programming
tools designed to facilitate in the study of genetic search. they are generally
cumbersome in their use as multi-purpose function optimization tools. A binary
representation of the design varables is left up to the user. In practical engineering
optimization problem with one or two dozen design variables, the effort needed to carry
out this encoding/decoding process may be nontrivial. particularly in problems with
mixed integer discrete vanables. It is therefore desirable for a genetic search code to
include an automatic encoding/decoding capability, and this is one of the features of the
code EVOLVE.

In problems with multiple relative optima in the design space, traditional
mathematical programming methods converge to the nearest local optimum. The
sharing function approach proposed by Goldberg and Richardson [S], when combined
with a mating restriction strategy [6], enables the location of the different relative
optima in such problems in a single genetic search. The EVOLVE code includes these
search strategies, and has been shown to be effective in locating multiple near-optimum
designs in problems with a nonconvex design space. EVOLVE also includes two
advanced search strategies referred to as multistage search and directed crossover [7].
The multistage genetic search is a specialized strategy for optimization problems o™
large dimensionality. In this approach. the precision of design variable representation
is gradually increased (i.e. the granularity of design variable representation is
decreased) in successive generations of genetic evolution. This is achieved by
increasing the length of binary string that represents each design vanable, but without
the attendant increase in the population size which would be otherwise required [8].
The basic idea behind the approach is to identifv promising regions in the design space
in earlier generations of evolution with a relatively smaller population size; the search is
then refined in those promising regions.

Directed crossover is designed to improve the effectiveness of the crossover
transformation in genetic search. In a traditional implementation of the approach,
crossover sites on the chromosomal string are selected at random. In directed
crossover. however, a bitwise generational gradient is developed to determine which bit
strings offer the most potential for improving the design fitness. A bias is developed in
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the crossover operation, wherein critical bit positions receive higher probabilities of
being selected as crossover sites. Directed crossover has been shown to be specially
effective in problems of high dimensionality, and where some design vanables are much
more significant than others in their influence on the objective and constraint functions.

EVOLVE is written in FORTRAN language and has been successfully tested on a
number of computational platforms such as SUN Sparc-2, IBM Risc6000/340. and the
DEC 5000/25. Subsequent sections of this paper discuss the genetic search procedure
and the special features of EVOLVE in greater detail. Numerical problems illustrating
the effectiveness of the program are also included for completeness.

THE EVOLVE CODE

Figure 1 shows the general organization of the EVOLVE code in a schematic form.
The basic operations in a genetic search based optimization procedure are indicated by
the sequence of commands enclosed within the dashed lines in this figure. The
specialized routines in EVOLVE modify the basic operations as necessary. In a basic
genetic search, the optimization is initiated with the generation of an initial population
of candidate designs. The creation of this first population is usually done with the help
of a uniform random number generation algorithm. In addition to the even distribution
of designs over the design space achieved by this approach. it is also possible to include
a number of known good designs in the initial population. Once the initial population is
formed, each design is evaluated and its corresponding fitness function value is
obtained. Based on the fitness function values of a given design and the average fitness
function of the present generation, each design is assigned a probability of being
selected as mating parents. Genetic algorithms apply selection pressure through this
process, allowing designs that are more fit in one generation to increase their presence
in subsequent generations. In a fixed population simulation of the search, designs with
lower fitness are eliminated from subsequent generations. After the selection of mating
parents, the operation of crossover is performed on a prescribed percentage of parent
designs in order to create offspring in next generation. Crossover is the primary
mechanism to introduce new designs into the population. For a pair of mating designs.
the popular two point crossover operation involves selecting two crossover sites on
each string at random. and then interchanging the binary substrings bracketed by the
crossover sites between the mating strings. Mutation can serve as a minor mechanism
for the introduction of new designs. and its principal purpose is to guard against
preconvergence to a false solution. The operation of mutation is the random selection of
a bit on a string, and changing the 0 to a | or vice versa: this operation is performed
with a low probability (less than 2% of the designs are typically affected). These
operations comprise one generation of genetic evolution. The genetic search is typically
terminated when the best design does not improve over a given number of generations
or when a prescribed maximum number of function evaluations have been performed.

As noted in Figure 1. the basic block of genetic search operators within EVOLVE
communicates with several specialized blocks of operations that effectively enhance the
flexibility of use as well as add to the overall usefulness of genetic search in problems
of practical interest. These special features are described briefly in the text that
follows.
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A. Automatic encoding/decoding of design variables

Genetic search operates on a chromosome string-like representation of the design
variables. While this feature allows handling of a mix of continuous. discrete, and
integer design variables, it also requires the encoding and decoding of design variables.
An appropriate choice of design variable coding is essential to the success of the
procedure, and generally requires some prior experience in the use of genetic search.
The EVOLVE code allows the user to select their own coding scheme for design
variable representation, or alternatively, the program simply requires that the user
specify the expected range of design variable vanations and the precision with which
the design variables must be represented. The encoding/decoding operations are
performed automatically within this program. If the user wants to seed some designs in
the initial population, only actual design vanable values, instead of the corresponding
binary string, of each seeded design are necessary. All best designs in the search and
designs in the final generation are reported as actual design vanable values. The option
does exist, however, to also request these variable in their coded form.

B. Automatic constraint handling

Most genetic search codes are designed to handle onlv unconstrained optimization
problems. Constraints are usually included by transforming the constrained problem
into an unconstrained one by the use of exterior penalty function techniques [3]. The
user generallv defines the pseudo-objective function which is formed by appending all
possible penalty terms resulting from violated constraints to the original objective
function. In EVOLVE, the user needs only to define each constraint function as an

inequality g; < 0. and the program automatically forms a pseudo-objective function for

each design in the population. The rate at which the penaltyv due to constraint
violations is increased can be specified by the user.

C. Sharning function implementation

The sharing function implementation [5] is essential for locating multiple relative
optima in the design space. The sharing function approach is based on a concept of
shared resources among distinct subsets of population. Each such subset converges to
one relative optimum. and in doing so. maximize its payoff. The principle of sharing is
implemented by degrading the fitness of each design in proportion to the number of
designs located in its neighborhood through the use of sharing functions. The extent of
sharing is controlled by a sharing radius o, . The distance metric between two designs
can be calculated as:

d; = Z(xk.i -xk,))z (D

k=1

and the sharing function is defined as follows:
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The raw fitness value of each design is decreased due to the presence of a large number
of designs in its vicinity. The sharing function implementation will prevent all candidate
designs from converging to a single optimum, and help locating multiple optima in a
genetic search. A mating restriction scheme is generally used in conjunction with the
sharing function implementation for locating multiple relative optima in the design
space (Its use in the EVOLVE code is left as an option). As the name suggests, mating
restriction prevents two remote designs from being selected as mating partners in the

crossover operation. This is achieved by checking the distance metric d;; between two
mating designs, and permitting the genetic evolution process to continue only if the

distance metricd;; is smaller than a user prescribed value.

D. Multistage search

Although genetic search has been routinely used in optimization problems involving
continuous design variables, it is important to bear in mind that the method essentially
searches for an optimum from a set of discrete design alternatives. In a large scale
optimization problem, the number of design variables is often very large. This typically
results in very long binary string representations of the design. In order to search
effectively in such a situation, the required population size would have to be
proportionately increased. The multistage strategy enables the use of relatively smaller
sized populations while retaining the effectiveness of the search. Multistage, varving
granularity approach in genetic search essentially involves a successive increase in the
precision with which a design space is represented. A coarser representation is first
used to identifv promising regions of the design space, with the underlying implication
that a smaller population size can be used for this purpose. Once the promising regions
of the design space are identified. a more detailed search can be conducted with a
higher precision in design variable representation. This search with higher precision
was implemented in EVOLVE by increasing the string length in successive steps. Even
though the design space is expanded by increasing the precision of representation. a
proportional attendant increase in population size may not be required. as the previous
stage solutions provide good seeds in regions that offer most promise. To counter the
possibility of genetic search drifting away from the most likely optimal solutions. a
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relaxation of design constraints at earlier stages of the search is implemented in
conjunction with the varying granularity approach. More detailed description of this
approach can be found in Ref. 7.

E. Directed crossover and mutation

The very nature of binary coding of design variables in genetic search assigns different
degrees of significance to different bits of the binary string. In theory, if a string of
binary characters of length N is used for representing the design, a population size that
is in proportion to the string length would have to be selected. If however, only a
smaller fraction, c*N of the bits in the string were really significant to the search
process, the population size could be reduced accordingly. The primary motivation
behind the directed crossover strategy, therefore, is to identify significant bit position on
the string, and to constrain the crossover operation to these bit locations. Two strategies
using generational memory of bit-by-bit crossover gain as a guideline in this selection
were implemented in the EVOLVE code. The directed crossover can be put into effect
after some generations in which regular crossovers are performed and generational
gradient information is compiled. More extensive description of these directed
crossover plans can be found in Ref. 7.

ILLUSTRATIVE EXAMPLES

There are three illustrative examples included in this section. The first is used to
demonstrate the effect of the sharing function implementation which is useful in
locating multiple relative optima in a multimodal design space. The second example is a
riveted lap joint efficiency maximization problem, where the design space consists of a
mix of integer and discrete design variables. The third example involves the sizing of a
25-bar truss in which multistage genetic search and directed crossover strategies were
used.

Example 1:

The first illustrative example is to solve an unconstrained multimodal optimization
problem. where the objective function is the Himmeblau's function has four distinct
optima. This function is defined as follows:

f(X) =(x{ +x, = 11)* +(x, +x3 = 7)° @)

Lower and upper bounds of design variables x, and x. were set to -3.0 and 5.0,
respectively. The precision of the design vanable is 0.01, and as a consequence. the
length of a binary string representing a design is 20. A population size of 20 was
automatically selected and probabilities of crossover and mutation were set to 0.6 and
0.01. respectivelv. A regular genetic search was first performed and used as a reference
for subsequent operations. The genetic search was terminated after 2.000 function
evaluations. A genetic search with an identical initial population was then performed
with the shanng function implementation active. Finally, a genetic search using the
sharing function approach in conjunction with a mating restriction strategy, was also



E@; Transactions on the Built Environment vol 2, © 1993 WIT Press, www.witpress.com, ISSN 1743-3509
Optimization of Structural Systems 645

performed. The latter two cases involving the sharing implementation used 1.0 aso,

and 0.2 asa as shown in Eq. (2). Furthermore, in the last case, a radius of 0.2 was
used as the mating restriction radius. Both the sharing and mating restriction radii are
nondimensional quantities, and the lower and upper bounds were scaled into 0.0 and
1.0. The two cases for which the sharing function implementation was used were
allowed to run up to 6,000 function evaluations. The initial population distribution for
all three searches is shown in Figure 2. The population distribution at the end of 1,000
and 2,000 function evaluations for the regular genetic search is shown in Figures 3 and
4, respectively. It is clear from Figure 4 that the search has converged on one of four
relative optima. The population distribution for both searches involving the sharing
function implementation at the end of 50 generations (1000 function evaluations) is
shown in Figure 5. It can be seen that although one of four relative optima has been
clearly identified. the remaining designs are still spread over the entire design space.
The results of continuing this search over more generations of evolution are shown in
Figure 6. Even though the trend was to move the designs towards each of the other
relative optima, there was a disruptive tendency that prevented a more precise location
of these relative optima. When a mating restriction was imposed in the search after the
first fifty generations, this disruptive tendency was eliminated, and as shown in Figure
7, each of the four relative optima were precisely identified.

Example 2:

This mechanical design problem involved the design of a lap joint between two steel
plates in which the rivet size, and the number and arrangement of the rivet pattern were
considered as design variables. The configuration of the plates and the nivets is shown
in Figure 8. The number of rows parallel to side AB is represented by an integer

variable x, with permissible values between | and 32. The number of the rivets in each
row X, was an integer variable and was allowed to assume values between | and 128.

The diameter X, of all rivets was assumed to be the same, and was chosen from a
commercially available set

x, =[6,8,10,12,14,16,18,20,22,24,27,30,33,36,40,45] mm

It is clear that this variable is of the discrete type. The code EVOLVE was simply
provided this physical description of the problem. The choice of binary string
representations was determined automatically within the program. The objective of this
optimization was to maximize the efficiencv of the joint, defined as the ratio of the
strength of joint to the strength of the plate. To avoid stress concentrations, two design
constraints were imposed on the placement of rivets. Detailed description of the joint
strength and constraints is presented in Reference 3. A population size of 30 was
selected. and a maximum of 3,000 function evaluations were specified in this search.
Probabilities of crossover and mutation were set as 0.8 and 0.01. respectively. In order
to transform the maximization problem to a minimization problem. the objective
function was defined as [.0-efficiency. The output history of the search is shown n

Figure 9. An optimum design of x, = 5,x; =13 and x; = 27 mm was obtained at the
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66th generation (after 1410 function evaluations) and the maximum efficiency was
82.45%.

Example 3:

The final example is the 25-bar truss structure shown in Figure 10. An extensive
definition of this problem can be found in Reference 8. The performance of multistage
search, directed crossover, and a combination of these two strategies was evaluated
against a traditional genetic search. This sizing problem includes 25 design vanables
each representing the cross-sectional area of one truss member. These design varniables

were assumed to vary discretely between lower and upper bounds of 0.01 in® and 4.01

, respectively. A spacing of 0.01in® was assumed in this discrete variation. In Ref. 8,
the number of independent vanables was reduced to 8 by the use of design variable
linking. The mass corresponding to the optimum with 8 design variables is 545.22 Ib.
which was used as the objective function scaling factor. In the present work, all 25
design vanables were allowed to vary independently. Four search plans were executed
five times each. The multistage search was divided into four stages. While lower and
upper bounds were unchanged for each stage. precision for stage | to 4 were set to 0.4,

0.1, 0.05, and 0.0lin* , and required binary lengths 100, 150, 175, and 225.
respectively. Population sizes were selected as 400 for both single stage searches, and
100 for both multistage search plans. The probabilities of crossover and mutation were
prescribed as 0.8 and 0.001, respectively. In each case, the search was terminated after
80,000 function evaluations. In the varying granularity approach, cach stage was
terminated after 20,000 function evaluations.

The output histories for genetic searches using a normal crossover, the two directed
crossover schemes available in EVOLVE, a mulitistage search, and a combined directed
crossover and multistage search are shown in Figures | la-e. respectively. Figures | la-
c show a similar trend. wherein the average best solutions obtained at 80.000 function
evaluations as 1.027 for the normal crossover plan, and 1.015 and 0.983 for the two
directed crossover plans. In the multistage and combined approaches, average objective
in the first stage was significantly higher than that in two single-stage approaches. The
best solutions obtained were 0.996 and 0.974 for multistage and combined plan,
respectively. In order to show the effect of directed crossover, the average objective
function value and the best objective function value after 8,000 function evaluations for
the normal crossover scheme and the directed crossover schemes are plotted together as
shown in Figure 12. Both the average and the best objective function values decrease
more rapidly with the help of directed crossover, after both share the same history for
the first 8,000 function evaluations during which the generational gradients were
compiled. It is noted that both muitistage and directed crossover approaches result in a
further decrease in the minimum weight of about 3.5% in comparison to the result
obtained by the traditional genetic search, and the combined approach reduces the
minimum weight by about 5%. As shown in Table l. these strategies obtain the
minimum weight obtained at the end of traditional genetic search in 1/2 to 1/10th the
number of function evaluations.
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CLOSING REMARKS

The present paper describes the features of a general purpose optimization code
EVOLVE that is based on the principles of genetic search. The program offers
flexibility of use in a large number of routine optimization problems. In addition to the
more basic and widely used genetic search operators, the program offers several
advanced features that extend the use of genetic search to optimization problems of
large dimensionality. The structure of the code is designed to also allow the use of the
program in a research environment, particularly to facilitate the testing of new concepts
in genetic search. The addition of a structural analysis capability to the EVOLVE
programming environment is presently under consideration with the intent of creating
an integrated structural design optimization tool.
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Table 1: Comparison of Strategy Performance for 25-bar Truss Problem
Strategy Final Best Objective Function | Function  Evaluations to
Evaluation Obtain Objective Function of
Plain GA
Plain GA 1.027 80,000
Multistage GA 0.996 16,000
Directed Crossover - A 1.015 71,000
Directed Crossover - B 0.983 37,000
Multistage + Directed 0.974 8,000
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Figure 1. A schematic layout of the EVOLVE code.
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5.00

Figure 2. Distribution of designs in the Figure 3. Distribution of designs at the end
first generation for all genetic searches.  of 1,000 function evaluations for the regular
genetic search.

Figure 4. Distribution of designs at the end  Figure 5. Distribution of designs at the end of
of 2.000 function evaluations for the regular 1,000 function evaluations for both genetic
genetic search. searches with sharing implementation.
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Figure 6. Distribution of designs at the end of 6,000 function evaluations for the genetic
search with only sharing implementation.

Figure 7. Distribution of designs at the end of 6.000 function evaluations for the genetic
search with both sharing implementation and mating restriction.
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Figure 8. Geometry of riveted lap joint.
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Figure 11a. Convergence histories for average and best fitness values for the 25 bar
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Figure 11b. Convergence histories for average and best fitness values for the 25 bar
truss with the directed crossover A plan.
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Figure 11d. Convergence histories for average and best fitness values for the 25 bar
truss with the multistage search plan.
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Figure | le. Convergence histories for average and best fitness values for the 25 bar
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2.4 2.4
22 f J22
20 PLAIN 120

A - = — - DIRECTED(A) ]

gi8h, DIRECTED(B) 1 1.8

N r ]

21.6F AVE J1.6

23 £ Van ]

SLAE e ST e e ] 1

oL e L 14
L2 R ) =g S
t.of 1.0
0.8 Frrrrrrr et 0.8

7000 31000 55000 79000

TRIALS

Figure 12. Comparison of convergence histories for average and best fitness values
between the regular crossover, directed crossover A, and directed crossover B plans.



