
Application of self-organizing maps
to genetic algorithms

S. Kan, Z. Fei & E. Kita
Graduate School of Information Sciences, Nagoya University, Japan

Abstract

This paper describes Self-Organizing Maps for Genetic Algorithm (SOM-GA). In
this algorithm, the search performance of a real-coded genetic algorithm (RCGA)
is enhanced with self-organizing map (SOM). The SOM is trained with the infor-
mation of the individuals in the population. Sub-populations are generated from
a whole population by the help of the map. The RCGA search is performed in
the sub-populations. The Rastrigin function is considered as a test problem. The
search performance of SOM-GA is compared with that of the RCGA. The results
show that the use of the sub-population search algorithm improves the local search
performance of the RCGA and therefore, SOM-GA can find better solutions in
shorter CPU time than RCGA.
Keywords: real-coded genetic algorithms, self-organizing maps, Rastrigin func-
tion.

1 Introduction

Evolutionary Computations can be classified into Genetic Algorithms (GA)[1, 2],
Genetic Programming (GP) [3, 4], Evolutionary Strategy (ES) [5] and so on. The
GA, which is one of the most popular evolutionary computations, has been pre-
sented by Holland in 1970s. Since then, theoretical study of GA operators and
the engineering application of GA have been studied widely by many researchers.
Recently, their attention focuses on the multi-objective optimization and real-coded
optimization problems from the viewpoint of engineering applications. Now, we
will focus on the real-coded optimization problem.

An original genetic algorithm is designed for optimization problems with binary-
coded design variables. Therefore, in the previous studies, real-coded design vari-
ables have to be transformed to binary-coded ones. However, some researchers

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI 3

doi:10.2495/OP090011

have presented the real-coded GA (RCGA) in which the real-coded design
variables are not transformed into the binary-coded ones [6–8]. In this study, we
will present the RCGA with self-organizing maps (SOM), which is named as
“Self-Organizing Maps for Genetic Algorithms (SOM-GA)”.

The SOM, which has been presented by Kohonen [9] and Van Hulle [10], is a
single layer feed-forward network where the output syntaxes are arranged in grid.
Simply, the SOM-GA is the combinational algorithm of the Real-Coded Genetic
Algorithm (RCGA) and the SOM clustering. The algorithm starts from the defi-
nition of the population of individuals. A self-organizing map is trained with the
objective function and the design variables of the individuals in the population. The
best match unit for a individual is chosen and then, a sub-population is defined by
the individuals included in the circle centering on the best match unit. RCGA is
performed iteratively in sub-populations and then, the obtained best individuals
are added to the next whole population.

The combinational algorithm of the evolutionary algorithm and the SOM has
already been presented by Buche et al. [11], which is named as Self-Organizing
Maps for Multi-Objective Evolutionary Algorithms (SOM-MOEA). The SOM-
MOEA is designed for the multi-objective optimization problems and therefore,
their aim is different from the SOM-GA.

In the numerical example, Rastrign function is taken as a test function. The
SOM-GA and RCGA are compared in their search performance by finding an
optimal solution of the Rastrign function.

2 Self-organizing map

Before explanation of Self-Organizing Maps for Genetic Algorithms (SOM-GA),
we will introduce Self-Organizing Maps [9, 10].

The self-organizing map is a single layer feed-forward network where the output
syntaxes are arranged in grid (Fig. 1). Each input is connected to all output neu-
rons. A weight vector with the same dimensionality as the input vectors is attached
to every neuron. The number of input dimensions is usually a lot higher than the
output grid dimension. SOMs are mainly used for dimensionality reduction rather
than expansion.

Figure 1: Self-organizing map.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

4 Computer Aided Optimum Design in Engineering XI

The weight vector wi at the unit i is given as

wi =
{
wi
1, w

i
2, . . . , w

i
n

}T
, (1)

and the input vector vj is as

vj =
{
vj
1, v

j
2, . . . , v

j
n

}T

. (2)

Taking the Euclid distance
∥∥vj −wi

∥∥ as a norm, the best match unit is selected
so that the norm is minimized. The best match unit c

(
vj
)

can be defined as

c
(
vj
)

= argmin{∥∥vj −wi
∥∥}. (3)

Once determining c(vj), the weight vector is updated by

wi(t + 1) = wi(t) + hci(t)
{
vj(t)−wi(t)

}
, (4)

where t denotes the discretized time; t = 0, 1, 2, The neighborhood function
hci(t) is defined as

hci(t) = αs exp

(
−‖rc − ri‖2

2σ2(t)

)
, (5)

where ri and rc denote the position vectors of the unit i and the best match unit,
respectively. The coefficient αs is sometimes defined as a monotonically decreas-
ing one. In this study, however, it is defined as the constant within the range of
0 < αs < 1. The function σ(t) is defined as

σ(t) = σ(t− 1)− R

TS
, (6)

where σ(0) = R and σ(TS) = 0. The parameters TS and R denote the number
of training step and the initial radius, respectively.

The SOM algorithm is as follows.
1. Initialize randomly the weight vectors wi.
2. Select the unit c(vj) so as to satisfy equation (3).
3. Update the weight vector wi according to equation (4).
4. Update the neighborhood function according to equation (5).
5. Repeat from step 2 to step 4.

3 SOM-GA algorithm

For explanation of the SOM-GA algorithm, we will take the following notations.
P (t) Population at generation t.

pi(t) An individual in a population P (t).
M Total number of individuals in a population P (t).

SP i(t) Sub-populations generated from a population P (t).
Map Self-Organizing Maps.

Rn Radius for sub-population SPi(t) in SOM-GA.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI 5

Figure 2: Flow chart of SOM-GA algorithm.

The SOM-GA algorithm (2) is as follows.
1. t = 0.
2. Initialize self-organizing map Map.
3. Generate randomly M individuals to construct an initial population P 0(t).
4. Evaluate fitness of individuals.
5. Generate the population P (t) as follows.

(a) Select two individuals from the population P 0(t) by roulette selec-
tion.

(b) Apply BLX-α crossover [6, 12] to generate new individuals.
(c) Repeat until generating M individuals.

6. Train Map with the values of the objective function and the design variables
of the individuals in the population P (t) according to the Section 3.

7. Generate new individuals as follows.
(a) Define sub-populations on Map by all individuals within a radius of

Rn from the best match unit for the individual pi(t).
(b) Perform RCGA operation in the sub-population SP i(t) to obtaining

best individual pi(t + 1).
(c) Repeat for every individual pi(t)(i = 1, 2, . . . , M).

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

6 Computer Aided Optimum Design in Engineering XI

-10

 0

 10

 20

 30

 40

 50

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

-10

 0

 10

 20

 30

 40

 50

-10

 0

 10

 20

 30

 40

 50

-4
-2

 0
 2

 4
-4

-2

 0

 2

 4

-10

 0

 10

 20

 30

 40

 50

Figure 3: Rastrigin function in two-dimension.

8. Terminate process if convergence criterion is satisfied.
9. Construct new population P 0(t + 1) by individuals pi(t + 1)

(i = 1, 2, . . . , M).
10. Update time step; t← t + 1.
11. Go to (4).

In the numerical examples, the test functions are taken as the objective functions.

4 Numerical examples

4.1 Problem setting

The SOM-GA is applied for finding an optimum solution of Rastrigin function.
The test functions are taken as the objective functions and, the SOM map is trained
with the values of the test functions and the design variables.

Rastrigin function is defined by

F (x) = 10n +
n∑

i= 1

(
x2i − 10 cos(2πxi)

)
(−5.12 < xi < 5.12) (7)

min(F (x)) = F (0, 0, . . . , 0) = 0.

In case of two design variables, the function is shown in Fig. 3. Since Rastrigin
function is a multi-modal function, it has one global minimum and many local
minima. Design variables are independent each other.

In this paper, the number of the design variables is specified as Ndv = 20.
Common parameters for the SOM-GA and the RCGA are listed in Table 1.

Number of the design variables is 20. Population size is 50. Crossover rate and
the mutation rate are 1.0 and 0.002, respectively. Roulette selection and BLX-α
crossover operations are adopted. In the real-coded mutation operation, the values
of the design variables are changed randomly.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI 7

Table 1: Common parameters for both algorithms.

Number of design variables Ndv = 20
Population size Np = 50

Selection Roulette selection

Crossover BLX-α, α = 0.5
Crossover rate 1.0

Mutation rate 0.002

Number of trials 10

Table 2: Additional parameters for SOM-GA.

Map size and type Hexagon of 20× 20
Initial neighborhood radius R = 10

Training rate αs = 0.8
Training times TS = 1000

Neighborhood radius Rn = 2
Operation number in sub-population N sub

g = 1000

Table 3: Maximum generation step Ng.

Rastrigin

(Ng)RCGA 1,000,000

(Ng)SOM−GA 20

Additional parameters for the SOM-GA are shown in Table 2. The neighbor-
hood radius Rn is the radius of the circular region on the self-organizing map
which covers a sub-population. The operation number in the subpopulation N sub

g

is the number of the RCGA operations in each sub-population.
Ten trials are performed in every cases from different initial populations. Mean

values are shown in the numerical results.
Maximum generation steps Ng are shown in Fig. 3. In the SOM-GA, the RCGA

operation is performed in every sub-populations. The estimation time of fitness
function is equal to the product of the number of maximum generation step, the
population size, and the number of the RCGA operations in every sub-populations.
In order to equalize the estimation times of fitness functions in RCGA and

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

8 Computer Aided Optimum Design in Engineering XI

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

0 100 200 300 400 500 600

c
ti
o
n
 V

al
u
e

RCGA

SOM-GA

SOM-GA (without SOM training time)

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

O
bj

e
c
t

F
u
nc

CPU Time(s)

Figure 4: The comparison of RCGA and SOM-GA.

SOM-GA, the generation steps are specified according to

(Ng)RCGA ≥ (Ng)SOM−GA ×Np ×Nsub
g .

where (Ng)RCGA and (Ng)SOM−GA denote the maximum generation step in
RCGA and SOM-GA, respectively.

4.2 Numerical results

Convergence histories of the best individuals are shown in Fig. 4. The abscissa and
the ordinate denote the CPU time and the objective function of the best individ-
ual, respectively. The RCGA and SOM-GA results are labeled with “RCGA” and
“SOM-GA”, respectively. The convergence speed of RCGA is faster than that of
the SOM-GA in the early steps. On the contrary, the convergence speed of SOM-
GA is slower than the RCGA in the early steps and then, is accelerated when the
objective function value is smaller than 0.001. A final solution is much better than
that by RCGA.

The CPU time of the SOM-GA without SOM training time is also shown in the
figure. The CPU time of the SOM-GA with SOM training time is twice as long
as that without the SOM training time. This means that the computational cost for
SOM training is almost equal to the remaining cost.

Next, we would like to discuss the effect of the map size to the search perfor-
mance. The map size varies from 10 × 10 to 80 × 80. The results are compared
in Fig. 5. The abscissa and the ordinate denote the dimensionless CPU time with
the maximum CPU time of maximum map size and the value of objective func-
tion, respectively and the labels denote the map size. We notice that the CPU time
increases according to the magnitude of the map size. When the map size is not
small, i.e., greater than 30× 30, the final solution converges to the same solution.
Therefore, we can say in this case that the map size of 30 × 30 is best from the

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI 9

Figure 5: Effect of SOM map-size.

view-points of the search performance and the CPU time. Since the most adequate
map size depends on the problem to be solved, we take a small map-size, i.e., the
map size of 20× 20, in the following examples.

5 Conclusions

This paper described the Self-Organizing Maps for Genetic Algorithms (SOM-
GA) for real-valued single objective function problems. In the algorithm, the self-
organizing maps are trained with the values of the objective function and the design
variables of the individuals in a population and the sub-populations are defined
by the help of the SOM clustering. The real-coded genetic algorithm (RCGA) is
applied to the individuals in each sub-population. The processes are repeated until
satisfying the convergence criterion.

The SOM-GA is applied for finding an optimum solution of Rastrigin function.
The results show that the SOM-GA can find better solutions in shorter computa-
tional time than the original RCGA without SOM.

References

[1] J. H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, 1 edition, 1975.

[2] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison Wesley, 1 edition, 1989.

[3] J. R. Koza, editor. Genwetic Programming II. The MIT Press, 1994.
[4] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, editors. Genewtic

Programming III. Morgan Kaufmann Pub., 1999.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

10 Computer Aided Optimum Design in Engineering XI

[5] T. Bäck, editor. Evolutionary Algorithms in Theory and Practice. Oxford
University Press, 1996.

[6] L. J. Eshelman and J. D. Schaffer. Real-coded genetic algorithms and inter-
val schemata. In L. D. Whitley, editor, Foundation of Genetic Algorithms 2,
pp. 187–202. Morgan Kaufmann Publications, 1992.

[7] O. Takahashi, H. Kita, and S. Kobayashi. A real-coded genetic algorithm
using distance dependent alternation model for complex function optimiza-
tion. In Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian
Parmee, and Hans-Georg Beyer, editors, Proc. of Genetic and Evolutionary
Computation Conf. (GECCO2000), pp. 219–226, 2000.

[8] H. Kita. A comparison study of self-adaptation in evolution strategies and
real-coded genetic algorithms, evolutionary computation. Evolutionary Com-
putation, Vol. 9, No. 2, pp. 223–242, 2001.

[9] T. Kohonen. Self-Organizing Maps. Springer Verlag, 3 edition, 2001.
[10] M. M. Van Hulle. Faithful Representations and Topographic Maps. John

Wiley & Sons, 2000.
[11] D. Buche, M. Milano, and P. Koumoutsakos. Self-organizing maps for multi-

objective optimization. In A.M. Barry, editor, GECCO 2002: Proceedings
of the Bird of a Feather Workshops, Genetic and Evolutionary Computation
Conference, New York, AAAI, pp. 152–155, 2002.

[12] M. Takahashi and H. Kita. A crossover operator using independent compo-
nent analysis forreal-coded genetic algorithms. In Evolutionary Computa-
tion, Vol. 1, pp. 643–649, 2001.

 www.witpress.com, ISSN 1743-3509 (on-line)
WIT Transactions on The Built Environment, Vol 106, © 2009 WIT Press

Computer Aided Optimum Design in Engineering XI 11

