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Abstract

The global dynamics of unsteady free-interface vertical liquid sheet flows is
studied, where the dynamics is termed global because it refers to the whole fluid
system. The formal development of a proper mathematical model is presented
initially, which accounts for pressure disturbances produced by the compliant
interface in an air enclosure adjacent to the sheet. The linear spectral analysis
(here restricted to sinuous disturbances only) shows that the surface tension
is globally stabilizing, the spectrum exhibiting two typical branches related to
the two characteristics curves of the governing equations. This basic finding is
confirmed by means of both computations of the optimal amplifications (i.e. the
greatest amplifications over all initial perturbations) of the relevant system energy
and direct numerical simulations of the spatio-temporal evolution of an initial
disturbance having the form of an interface Gaussian perturbation.

1 Introduction

Vertical liquid sheets are often used in industrial processes, classical examples
being coating technology and paper making. In most of these applications the
control of the global characteristics of the sheet is of great importance for the
final quality of the product. The ability in suppressing undesired oscillations or
nonuniformity in the steady configuration of the sheet, for example, usually reflects
in a good quality of the fluid layer deposited under a moving substrate.

The modeling of the falling liquid sheet and of its interactions with the external
ambient gas has been considered in various circumstances in the past, mainly
within the context of linear stability analysis (cf. for example [1–4]). In these
previous contributions the analysis of the system behaviour is usually conducted
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locally, while few studies have been developed for the global characteristics of
the curtain when it strongly interacts with the external ambient gas [5, 6]. In this
paper, a simple model for the deflection of the liquid sheet is initially derived under
the assumptions of thin thickness and small initial perturbations. This model is
then closed with the specification of the pressure field outside the sheet, which
represents here the reaction of an air enclosure located on one side of the sheet.
The equations are then studied theoretically, by employing both modal and non
modal analysis, and numerically by a direct numerical simulation of the unsteady
(linear) equations governing the evolution of disturbances.

2 The model

2.1 Governing equations

In order to derive a mathematical model for the unsteady evolution of a free-
falling liquid curtain, we will refer to the sketch depicted in Fig. 1. Although in
principle various types of interactions with the external gaseous ambient can be
considered, hereafter the pressure disturbances produced by the curtain compliant
interface within a two-dimensional air enclosure delimited by the curtain itself,
rigid walls and a lower basin, will be analyzed. Viscous and splashing effects
are neglected. The governing equations are the standard two-dimensional inviscid
Euler equations in which gravity is retained. Kinematic and dynamic boundary
conditions at the liquid-air interfaces are:

v± =
∂y±

∂t
+ u±

∂y±

∂x
(1)

p± = p±a ∓ σ
∂2y±

∂x2

[
1 +

(
∂y±

∂x

)2
]−3/2

(2)

where σ is the surface tension coefficient, y−(x, t) and y+(x, t) are the equations
of the left and right boundaries of the sheet, respectively, p−a (x, t) and p+a (x, t)
are the local values of the external (gas) pressure and the general definition
ϕ±(x, t) = ϕ(x, y±, t) has been employed, ϕ being one of the variables u, v and
p (where u and v are the streamwise and lateral velocity components, respectively,
and p is pressure).

Let us define the quantities ỹ and y as the thickness and the location of sheet
centerline:

ỹ(x, t) = y+(x, t) − y−(x, t) (3)

y(x, t) =
y+(x, t) + y−(x, t)

2
. (4)

Following Mehring and Sirignano [7], a perturbative approach (in which the
thickness of the sheet ỹ is considered as the small parameter) is adopted, i.e. each

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 79, © 2013 WIT Press

286  Computational Methods in Multiphase Flow VII



W

L

Enclosure

Liquid x

y

h(x, t)

H(x)

�(x, t) g

Figure 1: Geometrical configuration under consideration.

dependent variable ϕ is expressed as a power series in terms of (y − y):

ϕ = ϕ0(x, t) + ϕ1(x, t) [y − y] + ϕ2(x, t) [y − y]
2
. . .

Such power series expansions are valid for y ∈ (y−, y+) and hence the inequality
|y − y(x, t)| ≤ ỹ/2 holds. By adapting the procedure employed in [7], the
following set of equations for the lowest order terms in the expansion is derived:

∂ỹ

∂t
+
∂(u0ỹ)

∂x
= 0 (5)

∂y

∂t
+ u0

∂y

∂x
= v0 (6)

∂u0
∂t

+ u0
∂u0
∂x

= g − 1

ρl

[
∂pa0
∂x

− pa0
ỹ

∂y

∂x

]

+
σ

2ρl

∂

∂x

[(
f+ + f−

2

)
∂2ỹ

∂x2

]
+ · · ·+ σ

2ρl

∂

∂x

[
(f+ − f−)

∂2y

∂x2

]

− σ

ρlỹ

∂y

∂x

[
(f+ + f−)

∂2y

∂x2
+

(f+ − f−)
2

∂2ỹ

∂x2

]
(7)

∂v0
∂t

+ u0
∂v0
∂x

= − 1

ρlỹ
p̃a0 +

σ

ρlỹ

[
(f+ + f−)

∂2y

∂x2
+

(f+ − f−)
2

∂2ỹ

∂x2

]
(8)

where

f± =

[
1 +

(
∂y

∂x

)2

± ∂y

∂x

∂ỹ

∂x
+

1

4

(
∂ỹ

∂x

)2
]−3/2

(9)
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and ρl is the liquid density. As usual the following positions are made:

p̃a0 = p+a0 − p−a0, pa0 =
p+a0 + p−a0

2
(10)

in which p±a0 are the first order approximation of a power-series expansion in the
variable (y − y) of the (still undefined) ambient gas pressures p±a . The boxed
terms appearing in equations (7) and (8) are due to the developing nature of the
flow under consideration (due to gravity) and were not considered in the original
treatment of Mehring and Sirignano [7].

2.2 Base flow and linearized perturbation equations

The generic flow variable ϕ will be hereafter decomposed as the sum of a
stationary (base) contribution and the perturbation:

ϕ0(x, t) = Φ(x) + ϕ(x, t). (11)

Symmetry considerations give the following form for the base flow variables,
denoted by capital symbols [8]:

U = U(x), H = H(x), (12)

V = 0, Y = 0, P̃a0 = 0, ∂P a0/∂x = 0 (13)

F̃ = 0, F = F =

[
1 +

1

4

(
∂H

∂x

)2
]−3/2

. (14)

By substituting these position in the nonlinear governing system (5–8) one obtains
the following equations for the base flow variables:

UH = UinHin = const. (15)

U
∂U

∂x
= g +

σ

2ρl

∂

∂x

{
F
∂2H

∂x2

}
(16)

where Uin and Hin are, respectively, the average streamwise velocity and the sheet
thickness at the inlet. These equations have been already derived in the context of
steady flows and have been extensively studied in [8].

The linearized equations for the perturbation quantities u, v, � and h (l referring
to the centerline location of the sheet and h to its thickness) are:

∂h

∂t
+

∂

∂x
(Uh+ uH) = 0 (17)

∂�

∂t
+ U

∂�

∂x
= v (18)

∂u

∂t
+
∂ (Uu)

∂x
= − 1

ρl

∂p

∂x
+

σ

2ρl

∂2

∂x2

(
F
∂h

∂x

)
(19)

∂v

∂t
+ U

∂v

∂x
= − p̃

ρlH
+

2σ

ρlH

∂

∂x

(
F
∂�

∂x

)
(20)
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Note that the set of equations (17–20) shows two separated systems for the
variables h, u (equations (17) and (19)) and v, � (equations (18) and (20)). These
two systems will result decoupled if one can show that the values of p̃ and p
(relative to the ambient gas pressure perturbation) depend respectively on v, � and
on u, h. By following a standard terminology we will employ the term varicose
with reference to disturbances involving variations in the thickness h and in
the streamwise velocity u, and the term sinuous with reference to disturbances
involving variations in the centerline position of the sheet � and in the transverse
velocity v.

2.3 Ambient gas pressure model

As depicted in Fig. 1, the present model of the external pressure field subjected
to perturbation refers to the air enclosure located on one side of the curtain.
This type of perturbation, which is induced by a compliant displacement of the
sheet interface, was already analyzed by Schmid and Henningson [5], but they did
not include surface tension effects. Assuming isentropic transformation of the air
within the enclosure and behaviour of perfect gas, yields:

p̃ = − γPa0

LW − ∫ L

0
H
2 dx

∫ L

0

� dx (21)

p =
γPa0

LW − ∫ L

0
H
2 dx

∫ L

0

h

2
dx (22)

where γ is the heat specific ratio, L the curtain length and W the transverse
dimension of the air enclosure. For varicose disturbances, as shown by equations
(19) and (22) the contribution related to the pressure term is null because p does
not depend on x.

2.4 Non-dimensional equations and slender-sheet approximation

The equation of motion (15-16) and (17–20) can be conveniently re-written in
non-dimensional form by employing the reference quantities:

Lr = U2
in/g, �r = Hin, ur = Uin, (23)

tr = Lr/Uin = Uin/g, (24)

vr = �r/tr = εUin, pr = ρlgHin = ερlU
2
in (25)

where ε = Hin/Lr = Hing/U
2
in is the slenderness parameter (reciprocal of Froude

number). The equations (18) and (20) for sinuous disturbances, for example,
reduce to:

∂�∗

∂t∗
+ U∗ ∂�

∗

∂x∗
= v∗ (26)
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∂v∗

∂t∗
+ U∗ ∂v

∗

∂x∗
=

1

WeH∗
∂

∂x∗

(
F ∗ ∂�

∗

∂x∗

)
−

γ

H∗
P ∗
a0

L∗W ∗ − ε
∫ L∗

0
H∗
2 dx∗

∫ L∗

0

�∗ dx∗ (27)

where We = ρlU
2
inHin/2σ is the Weber number, and F ∗ is:

F ∗ =

[
1 +

1

4
ε2
(
∂H∗

∂x∗

)2
]−3/2

, (28)

stars denoting nondimensional quantities. By adopting a power series expansion in
the small parameter ε2, for the base flow variables, and an expansion in ε for the
perturbation quantities,

U∗ = U∗
0 + ε2U∗

1 + ε4U∗
2 + . . . v∗ = v∗0 + εv∗1 + ε2v∗2 + . . .

H∗ = H∗
0 + ε2H∗

1 + ε4H∗
2 + . . . �∗ = �∗0 + ε�∗1 + ε2�∗2 + . . .

the lowest order approximation for the base flow gives the non-dimensional version
of the classic free-fall Torricelli’s solution

U∗
0 =

√
1 + 2x∗, H∗

0 =
1√

1 + 2x∗
. (29)

The sinuous perturbation equations, at zeroth order, are:

∂�∗0
∂t∗

+ U∗
0

∂�∗0
∂x∗

= v∗0 (30)

∂v∗0
∂t∗

+ U∗
0

∂v∗0
∂x∗

=
1

WeH∗
0

∂2�∗0
∂x∗2

− k

H∗
0

∫ L∗

0

�∗0 dx
∗ (31)

where k = γP ∗
0 /L

∗W ∗.

3 Analysis of sinuous disturbances

In the present paper we will restrict our study to sinuous disturbances only, that
will be analyzed both by determining their global eigenfunctions and by carrying
out direct numerical simulations of the governing equations.

3.1 Linear global eigenfunctions

Global temporal modes are introduced by the following positions: �∗0(x
∗, t∗) =

L∗
0(x

∗)eiωt∗ and v∗0(x
∗, t∗) = V ∗

0 (x
∗)eiωt∗ . By substituting them in the governing
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Figure 2: Spectrum for We = ∞ and L∗ = 6.25.

equations (30)-(31) we obtain

⎡
⎣ I −U∗

0D

−U∗
0D

1

WeH∗
0

D2 − k

H∗
0

∫ L∗

0
dx∗

⎤
⎦
(
L∗
0

V ∗
0

)
= iω

(
L∗
0

V ∗
0

)
(32)

where D, D2 and I are first derivative, second derivative and identity operators,
respectively. The boundary conditions are L∗

0(0) = V ∗
0 (0) = 0. A Chebychev

spectral collocation method has been used in order to solve the eigenvalues
problem.

As usual in this kind of problems, once defined the meaningful energy of the
system, it is convenient to find the optimal amplification of the energy, i.e. the
greatest amplifications for all the possible initial conditions (the so-called growth
function G(t) [9]). For sinuous disturbances, the energy is defined as:

E(t) =

∫ L∗

0

H∗
0v

∗
0
2 dx∗ +

1

We

∫ L∗

0

(
∂�∗0
∂x∗

)2

dx∗ (33)

that takes into account both kinetic and surface tension contributions.
Two typical spectra obtained in the cases of absence of surface tension, We =

∞, and We = 2, both for L∗ = 6.25, are depicted in Figs. 2 and 3, respectively.
Note that the former case corresponds to the situation analyzed previously by

Schmid and Henningson [5]. In the presence of surface tension the spectrum
preserves the symmetry properties, but the unstable modes of high frequency
ωr disappear, due to the stabilizing effects of the surface tension. Moreover, the
presence of two distinct symmetrical branches is also evident, which is justified
on the grounds of the hyperbolic character of the governing equations system.
Neglecting the external pressure contribution, this last can be recast in a single
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Figure 3: Spectrum for We = 2 and L∗ = 6.25; the red branch refers to the slower
characteristic, the blue branch to the faster one.

equation in terms of �∗0

U∗
0

(
U∗
0 − 1

We

)
∂2�∗0
∂x∗2

+ 2U∗
0

∂2�∗0
∂x∗∂t∗

+
∂2�∗0
∂t∗2

+
∂�∗0
∂x∗

= 0 (34)

Equation (34) is a 2nd order hyperbolic partial differential equation having two
real and distinct characteristics given by (as an useful reference, see also [4]):

dx∗

dt∗
= U∗

0 ±
√

1

WeU∗
0

(35)

Therefore, the two branches of the spectrum correspond to the two characteristics
along which disturbances propagate; in order to support further this observation,
the fall times (i.e. the times needed in order the sheet perturbation crosses the entire
domain) related to the two characteristics,

T
(1,2)
fall =

∫ L∗

0

dx∗

U∗
0 ±

√
1

WeU∗
0

(36)

have been evaluated (T (1)
fall = 1.80, T (2)

fall = 5.38) and related to the almost constant
spacing between two subsequent eigenvalues belonging to the same branch
measured along the ωr axis (Δω(1)

r and Δω
(2)
r ). It is found that this spacing agrees

closely to free-fall frequency f (1,2)
fall = 2π/T

(1,2)
fall . This behaviour was expected,

because of some general results on the relation between the global spectrum
morphology and oscillations timescales in linear evolutionary models [10]

Fig. 4(a) and (b) show that optimal global amplifications of energy calculated
by considering separately eigenfunctions related to two branches of the spectrum
exhibit an energy transient growth characterized by time-periodic oscillations with
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Figure 4: Optimal energy amplifications for We = 2 and L∗ = 6.25; a) spectrum
red branch only; b) spectrum blue branch only; c) overall.

very low peak values. The total gain curve is plotted in Fig. 4(c) where one can
observe a very strong transient amplification because of coupling effects between
the two branches of eigenvalues.

3.2 Direct numerical simulation

In order to validate in another way the results shown in the previous section,
direct numerical simulations of the system (30-31), in the absence of the pressure
term, have been carried out by using a 4th order finite difference scheme for the
discretization of spatial differential operators. For the temporal integration a semi-
implicit theta-method scheme has been employed. The spatio-temporal evolution
of the initial disturbance constituted by a Gaussian peak for �∗0, located near the
origin, is reported in Fig. 5. Note that the initial packet splits while travelling down
the sheet according to the different speeds of the two characteristics along with
disturbances propagate.

4 Conclusions

The unsteady global dynamics behavior of a free-interface vertical liquid sheet
flow has been studied, where such a behavior has been defined global because
it refers to the entire fluid system as a whole. The first part of the paper dealt
with the formal development of a proper mathematical model, which accounts of
a particular kind of disturbances in the external gaseous ambient, constituted by
an enclosure limited by solid walls, a bottom liquid basin and one of the two sheet
interfaces.

A major finding is that the fluid system is stabilized by the surface tension.
Moreover, since the unsteady dynamics can be described by means of a typical
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Figure 5: Spatio-temporal evolution of the initial disturbance for We = 2 and
L∗ = 1.

2nd order partial differential equation of hyperbolic type, showing two distinct
characteristic curves, the eigenvalues spectrum is typically characterized by two
branches, each of them corresponding to disturbances eigenfunctions propagating
along the two characteristic curves.

Another very interesting result is that both spectrum branches highlight
a practically constant spacing among the values of their real parts, such a
spacing being intimately connected to the fall times of the sheet perturbations
over the height of the gas ambient enclosure. This result, which is typical of
other convection-dominated dynamics systems, is confirmed under other two
viewpoints.

A first comparison basis was offered by direct numerical simulations of
the governing equations, that showed, among other features, how the initial
disturbance imposed to the flow field under the form an interface Gaussian
perturbation, evolved in the spatio-temporal framework by splitting itself into two
wave-packets travelling at the expected speeds. In addition, a parallel investigation
has been carried out in order to compute time trends of optimal amplifications
of the significant system energy (accounting of both kinetic and surface tension
contributions), where the term optimal refer to the greatest energy amplification
over all initial perturbations. Both comparisons showed results in very close
agreement with the spectral analysis performed in the initial part of the paper.
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