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Abstract 

This study presents the steps followed to obtain mathematical models for the 
length of the transition region between the “full-water” and “full-mixed” flows in 
stepped spillways. This transition length is defined here as the distance along the 
flow, parallel to the pseudo-bottom, starting at the end of the “full-water” region 
and ending at the beginning of the “full-mixed” region. The definition is 
proposed based on experimental profiles of the surface obtained with an acoustic 
sensor in a stepped chute, which allows one to locate adequately the minima and 
maxima of the profile. A set of profiles obtained for different flow conditions is 
shown, and a comparison between predicted and calculated transition lengths is 
made. Experimental data and theoretical predictions superpose adequately for the 
present set of data. 
Keywords:   air-water flow, aeration, transition length, stepped spillways. 

1 Introduction 

For the design of stepped chutes it is necessary to know the behaviour of the air-
water mixture along the flow. In many cases it is necessary to build bottom 
aerators that must be conveniently placed, for which the position of the inception 
point is needed (the section where the air begins to be captured by the water at 
the upper surface). It is also necessary to know the length of the black water 
region (upflow of the inception point), and the length along the flow needed for 
the air to travel until the bottom of the channel (downflow of the inception 
point). This length is here called “transition length”, and is defined as the 
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distance, parallel to the pseudo-bottom, which starts at the end of black water 
region and finishes at the beginning of the full-aerated region. The present 
analysis is valid for skimming flows.  
     It is generally accepted that skimming flows, as occur in smooth chutes or 
spillways, consists of three regions: (1) single-phase flow (water); (2) partially 
aerated flow, and (3) air-water two phase flow (Cain and Wood [5]). Similarly, 
these regions are also observed in stepped chutes, and their quantification is 
relevant, being motivated by the need of protection of the spillways from 
possible damages caused by cavitation. This study presents a mathematical 
model for the transition length in stepped spillways.  

2 Theoretical formulation 

Two formulations are presented to obtain predictions of the Transition length. 
The first one considers classical conservation principles, and the second 
considers an approximation based on analogies with basic transport equations.  

2.1 Equation based on conservation principles (Model 1) 

In this approximation, the principles of conservation were written in the Eulerian 
and integral forms. The control volume chosen has two input surfaces (section 1 
and the free surface, through which air is captured), and one output surface 
(section 2), as shown in fig. 1. It is assumed that the main transport of mass, 
momentum and energy occurs through sections 1 and 2, as shown in the 
sequence. For steady state calculations, the integrations are performed over the 
areas of sections 1 and 2. 
 

 

Figure 1: Control volume. 

2.1.1 Conservation of mass 
The mass conservation equation for steady flow is: 
 

  
2

22
1

11 dAvmdAv Surf   (1) 

 

, v, and A represent the densities, velocities and areas considered in the 
problem. The subscripts “Surf”, 1 and 2 indicate the upper surface, and sections 
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1 and 2, respectively, while m represents the air mass flux. Because this flux is 
much lower than those given by the integrals on surfaces 1 and 2, its influence is 
considered here as composing the corrective factor of the flux on section 2.  
As 1, is constant, but 2 varies along A2, we have: 
 

 111
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11 AVdAv             and          22
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     The use of average values imposes a corrective factor (0), which also 
accounts for mSurf of eqn (1), furnishing 
 

 1112220 AVAV    (3) 
 

     Defining C as the volume fraction occupied by the air, the density of the 
mixture () is usually presented as:  
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     Substituting 4 into 3, and using A=Bh, leads to: 
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where h* = h2/h1.  

2.1.2 Conservation of momentum 
The momentum equation for steady flow is given by: 
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111 BhVBhVdAvvdAvvF     (6) 

 

 is the Boussinesq coefficient, and ω1 in section 2 is a weighting factor which 

takes into account the fact that 2.ρ ρ  The control volume has a lateral 

trapezoidal form, as shown in fig. 1. ω2 is defined as the fraction of this area 
occupied by water (ideally corresponding to the lower triangle in the figure). It is 
assumed that the mixture at the remaining fraction of the trapezoid (ideally the 

upper triangle) is 2ρ , defined by eqn (5). The force F acting on the control 

volume is expressed as F=Fw+Fp+F, where Fw is the weight, Fp is the force due 
to pressure and F is the force due to the bottom shear stress. The three forces are 
given, respectively, by: 
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 BLF o   (7c) 

     The effects of shear stresses on the walls and the free surface were not 
considered. Combining eqns (5), (6) and (7), solving them for L/h1, defining the 
nondimensional parameters L* = L/h1, and Fr1=V/(gh1)

1/2, leads to: 
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     The shear stress was obtained from the Darcy-Weisbach equation, and is 
related to the friction factor f at the bottom of the channel as:  
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2.1.3 Conservation of nergy 
The energy equation for steady flow is given by: 
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     Q  is the heat transfer across the control surfaces, W  is the power transferred 

due to shear forces, SurfE is the contribution due to the air flow through the 

surface (neglected here in relation to the other parcels), and e=gz+v2/2+u.  
Eqn (10) is then represented as: 
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     The integrals at sections 1 and 2 are represented, in the next equations, by I1 
and I2, respectively. Using mean values, a Coriolis coefficient c1 must be used 
for section 1, and p1=1gh. In section 2 a new weight coefficient 3 is used 

(similar to the Coriolis coefficient), z2=0 and p2 is assumed to be p2=4 2 ,ρ gh, 

where 2ρ  is the mean value of 2 and 4 is an adjusted constant.  
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     Combining eqns (3), (5), (10) and (11): 
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Where hp, known as “head loss”, is given by: 
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     The head loss may be simplified to a punctual loss, so that hp=KFr1
2h1/2, 

where K is a constant. Writing then eqn (12) in nondimensional form, and 

solving it for C1 , results:  
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     The set of eqns (8) and (14) allows to obtain L*, and is here named “Model 
1”. In this study a least squares adjustment of the constants was made using a 
nonlinear procedure. 

2.2 Analogy with basic transport equations (Model 2) 

Schulz and Simões [3] presented an alternative analysis of the transition region 
also considering the volume of fig. 1. The authors considered that: 1) the rate of 
formation of voids in the water, indicated by c , is proportional to the water flow 

rate that crosses the volume, q; and 2) c is also proportional to the slope of the 
surface, dh/dx. Joining both proportionalities, it leaded to: 
 

 
dx

dh
qKc   (15) 

 

K is a proportionality factor. The dimensions of the variables are: |h|=m, |x|=m, 
|q|=m2s-1,| c |=s-1, |K|=m-2. As mentioned by Schulz and Simões [3], eqn (15) is 
similar to the basic equations used in Transport Phenomena for mass and heat 
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transfer, because it involves a first order derivative. Assuming ,c  q and K as 
constants, the integration of this equation, from x=0 to x=L, produces:  

 

  12 hh
c

Kq
L 


 (16) 

 

     Although very simple, eqn (16) produced a correlation coefficient of about 
0.73 (considered acceptable) when compared with the experimental data 
described in section 3. It was then “allowed” for one of the constants to vary. K 
was chosen, and the following general form was proposed: 
 

   i

i
i qhK    (17) 

 

i are constants. Eqns (15) and (17) were then rearranged to: 
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     To obtain an adequate solution, it is necessary to conveniently truncate the 
series in eqn (18). For i=0, the solution is eqn (16) (acceptable). In this study we 
used i=1, which leads to: 
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     This equation was compared with the measured data, together with an 
alternative semi-empirical form, in which all parcels have independent 
coefficients, that is,  
 

     5
2
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231221   qhqhqhqhL  (20) 
 

i are constants. Eqn (20) has the same form of eqn (19), which is the reason of 
using it here. It is obviously expected that the last equation furnishes a better fit 
to experimental data, because it involves five adjustment constants (the former 
involves only two). Eqn (19) is named here Model 2a and eqn (20) is named 
Model 2b.  

3 Experimental results 

Experiments were conducted in a channel of the Laboratory of Environmental 
Hydraulics, in the School of Engineering at São Carlos (fig. 2a). The channel 
was 5 m long and 20 cm wide, allowing adjustments of the slope angle between 
0o and 45o. In this study  = 45°. The height of the steps was s = 5 cm. The flow 
rate was controlled upstream by a sluice gate, and measured with an 
electromagnetic flowmeter. The profiles of the free surface were obtained 
positioning an ultrasonic sensor in 40 locations along 3.5 m of the channel. The 
sampling frequency adopted for the depth measurements was 50 Hz, and the 
sensor was maintained 120 s at each position to obtain representative data for the 
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depths. A typical mean profile obtained in this study is shown in fig. 2b. This 
figure also shows the plot of the analytical solution for the single phase region 
(indicated by S2, as obtained by Simões et al. [4]), and the minimum and 
maximum positions that limit the transition region. 
 

.  

Figure 2: (a) Stepped chute and (b) experimental profile. The transition 
length is the distance between the minimum and maximum points 
of the surface profile. 

3.1 Comparison with literature 

The position of the inception point and the length of the transition region were 
here obtained from the measurements, as indicated in fig. 2b. A comparison was 
made with a prediction for the position of the inception point suggested by Boes 
and Hager [2]. Following a translation of the origin similar to that proposed by 
Boes [1], and using the measured points to adjust the theoretical curve, the 
difference between the positions of the measured and predicted inception points 
corresponds roughly to the transition length. The difference occurs because Boes 
and Hager [2] considered the full mixed region, while here the beginning of the 
transition region is considered.  

3.2 Measured and predicted transition lengths 

Figs 3, 4 and 5 show all the surface profiles measured in the present study. It is 
shown that the minima and maxima of the different profiles are well defined in 
most of the experiments, which points to the adequacy of this methodology. In 
some profiles the measurements are somewhat sparser, like shown in figs 5n 
(minimum) and 5o (maximum), which introduce errors in the evaluation of L, h1 
and h2, but even so allowing to observe the transition region. 
     The proposed models for the transition length involve sets of constants that 
must be adjusted. For eqns (8) and (14) (Model 1), a nonlinear least squares 
adjustment using the set of experimental data furnished: c1 = 3.61; 1 = 1.44; 3 
= 0.042; 1 = 0.086; K = 0.17; 2 = 1; f = 0.0; 0 = 0.056; 4 = 0.91. It must be 
said that other constants may also produce good adjustments, and that the 
physical principles used to derive the equations imposed the definition of this set 
of constants. The superposition between model and experimental data is shown  
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Figure 3: Experimental profiles and analytical solutions for runs 2 through 5.  

in fig. 6a. As can be seen, the general trend of the experiments was captured by 
the model.  
     The convenience of a more restricted set of constants was one of the reasons 
for the search of an alternative quantification (Schulz and Simões [3]). Applying 
the least squares method to eqn (19) (Model 2a), the following constants were 
obtained: 0/ c =290.7, 1/ c = -2290.1. As can be seen in fig. 6b, also this 
equation follows the general trend of the experimental data. 
     Finally, applying the least squares method to eqn 20 (Model 2b), the 
following constants were obtained: 1=789.12, 2=-976.5, 3=-10610.5, 4= 
17265.15, 5=0.1923. Considering the number of constants, Model 2b (five 
constants) lies between Model 1 (nine constants) and Model 2a (two constants). 
Fig. 6c shows that it reproduces well the experimental data, and that it may be 
considered in further studies for the quantification of transitions lengths.  
     The correlation coefficients between measured and predicted values were:  
Model 1 = 0.94, Model 2a = 0.90, and Model 2b = 0.97.  

4 Conclusions 

Governing equations were derived for the calculation of transition lengths 
between full-water and full-mixed regions in stepped spillways. Two main 
procedures were followed: 1) using conservation principles, and 2) using an 
analogy with basic transport equations. The second procedure furnished an 
equation with two adjustment constants, which was modified, involving then five 
constants. The three predictions were compared with experimental data obtained 
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Figure 4: Experimental profiles and analytical solutions for runs 7 through 
10, and 14 through 17. 
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Figure 5: Experimental profiles and analytical solutions for runs 18 through 
21. 
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Figure 6: (a) Model 1 (eq. (8) and eq. (14)); (b) Model 2a (eq. (19)); 
(c) Model 2b (eq. (20)). 
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in a stepped chute inclined in 45o. The equations were adjusted using a set of 
data obtained for 16 different experimental conditions, in which the flow rate and 
the opening of the sluice gate were changed. Predicted and measured values 
showed adequate superposition for the three models. The best superposition was 
obtained for the second modified model.  
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