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Abstract 

The aim of this work is to determine the interaction between a droplet’s 
stationary spray and a fluid flow, accounting for droplet vaporization, breakup 
and turbulences effects. In order to achieve this, a Lagrangian Monte Carlo code 
(McSpray) has been developed, besides a volume-finite Navier–Stokes solver 
(Karalis). The two codes work sequentially on the same computational grid, each 
influencing the other, so that a complete two-way coupling might be modelled. 
To validate the McSpray code in the case of two-way coupling, two cases have 
been performed: the first is a surface injection parallel to the inflow continuum 
velocity; the second is a conic point injection having an injection angle equal to 
15 degrees. To verify these results, they are compared with the ones provided by 
Fluent commercial code.  
Keywords: finite volume, spray, Monte Carlo. 

1 Introduction 

The subject of multiphase flow modelling processes is a quite vast research field 
of utmost practical interest. When two or more phases move relatively to each 
other, they may exhibit a large number of possible flow regimes. There are 
several classifying ways of these multiphase flows. In dispersed flows all the 
phases except one exist as dispersed (discontinuous) particles flowing through 
the continuous fluid.  
     Using the Eulerian–Lagrangian approach, trajectories of dispersed phase 
particles are simulated by solving an equation of motion for each particle. 
Motion of the continuous phase is modelled using a conventional Eulerian 
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framework. Depending on the degree of coupling, solutions of both phases 
interact with each other. For two-way or four-way coupling, an iterative solution 
procedure needs to be adopted. In simple, one-way coupling, a continuous phase 
flow field can be obtained independently of the motion of the dispersed phase. 

2 Mean equation in the gas phase 

The main features of the gaseous flow are deduced from the resolution of the 
Reynolds Averaged Navier–Stokes (RANS) equations written for a non-reactive 
single fluid. The Spalart-Allmaras turbulence model is used to compute the 
unclosed turbulent terms. 
     In order to apply the numerical fully compressible formulation to 
incompressible flows, a preconditioning technique is used. The preconditioned 
system of the Navier–Stokes equations, in compact vector form, is  
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where Q represents the vector of conservative variables ( )Ti v~,E,u,Q ρρρρ= , Fj 
the corresponding inviscid fluxes and S the source term vector. The 
preconditioning matrix is given by 1

modMMP −⋅= . M represents the Jacobian 
matrix of the vector Q with respect to the vector of the so-called viscous-
primitive variables ( )Tiv v~,T,u,pQ = . Mmod represents a modified version of M. 
All matrices are given in reference [1].   

2.1 Numerical method 

Equations are integrated with a cell-centered Finite-Volume method on block-
structured meshes. Convective inviscid fluxes are computed by a second order 
Roe’s scheme [1]. 
     In Finite-Volume and semi discrete form, the system (1) becomes 
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where RES represents the vector of residuals and Ω the cell volume. 
     Updating is done in terms of the viscous primitive variables Qv. If an implicit 
numerical scheme is used to discretize the time derivative and after linearization: 
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This linear system is solved with an iterative red–black relaxation scheme [1]. 

3 Representation of the dispersed phase 

3.1 Monte Carlo technique 

Monte Carlo technique consists in calculating the characteristics of a system by 
generating a certain number of random events enough to catch its behaviour. 
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Assuming that the evolution of the physical system can be described by a pdfs, 
the Monte Carlo simulation can proceed by sampling from these pdfs. This 
requires a fast and effective way to generate a random numbers uniformly 
distributed on the interval [0, 1]. This method is used both to compute initial 
diameter, position and velocity of every droplet injected and to model turbulence 
effects by means of the “eddy interaction model”. 
     It is well known, from experimental studies, that in general cases the particles 
diameters are distributed according to a so-called Rosin Rammler distribution. 
The initial position of the particle is determined by assuming the particles 
generated from an annular section with a constant density distribution over the 
surface. The initial velocity is computed in the same way. Currently the velocity 
pdfs are assumed to be Gaussian [2]. 

3.2 Velocities and trajectories computing 

The Basset–Boussinesq–Oseen equation for forces balance on the droplet is [3]     
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where ( )c
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=  for a stationary case. 

     Equation (4) is simplified neglecting the Basset force (in air 3
dc 10 −≈ρρ ). 

So (4) becomes:  

( ) CvuB
dt
dvA +−=                                                (5) 

For a spherical particle f is given by a correlation proposed by Clift and Gauvin 
[4]. When a droplet distortion occurs f must be corrected.       Equation (5) is integrated by using a Crank-Nicholson scheme: 
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where n represents the time iterations number and  

( ) tuvuu;uu
2
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The trajectory is obtained directly by integrating the velocity fields. During each 
integration step coefficient B is updated to take account for evaporation and 
break-up. 

3.3 Break-up model 

The break-up model used in this work is the Taylor analogy break-up model 
(TAB) [2]. This model is suited for low Weber numbers sprays (less than 100).  
It is based upon an analogy between an oscillating and distorting particle and a 
spring mass system. 
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     In a non-dimensionalized form, by setting ( )rCXY b= , the equation of the 
forced oscillator becomes: 
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where CB is a constant equal to 0.5. Break-up occurs for Y > 1. 
     The coefficients of this equation are taken from Taylor’s analogy. The 
numerical integration of (8) is done by considering its coefficients constant. To 
check whether break-up occurs, one estimates the amplitude of the oscillation, 
assuming no damping [2]. Anyway if break-up doesn’t occur the mean YM is 
calculated. Instead, if break-up occurs we calculate the Sauter mean diameter of 
the child droplets and consequently the child droplets number and velocities.  

3.4 Evaporating model 

During its trajectory each particle can evaporate or condensate according to its 
surrounding conditions. The rate of change of droplet mass is [3]: 

D
ww

DDSh
dt

dm ,As,A
vc

2d ∞−
= ρπ                                        (9) 

The vapour mass fraction at the droplet surface wA,s can be evaluated if the 
droplet temperature is known. For a dilute spray wA,∞ can be assumed to be equal 
to 0. 
     From (9) and by integration it is quite straightforward to obtain: 
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This is the so-called D2-law. It is necessary to write the energy equation for the 
droplet to compute the energy exchanged by the droplet with the continuum.  

3.5 Turbulence effects 

To determine the droplet transport due to turbulence, the “eddy interaction 
model” is used [5]. This approach models the turbulence flow as a set of random 
eddies each characterized of a certain length le and a certain lifetime Te. The 
former dependent on a Eulerian flow scale l and the latter on the Lagrangian time 
scale lτ . So the continuum velocity at a given point is iii uUu ′+=  where the 
turbulent fluctuation iu′ is constant inside the eddy “radius” le. Moreover, thanks 
to the central limit theorem, iu′  will have a Gaussian pdf and the standard 

deviation can be taken equal to 3k2 . The Eulerian length scale and the 
Lagrangian time scale can be determined by a two-equation turbulence model. 
When using Spalart Allmaras turbulence model only a single turbulence quantity 
is solved. A second turbulence quantity must be available in order to assemble a 
turbulent kinetic energy and its dissipation rate [6]: 
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The lower between tcross and eddy lifetime ( )l2τ  is the time a droplet actually 
interacts with the eddy. The trajectory of the droplet is calculated for a period 
equal to the interaction time. 

3.6 Source terms computation 

The source terms are calculated by adding to cach local cell counters the mass, 
the momentum and the energy exchanged by each droplet during its path. The 5 
source terms are computed for each time step (and added to the scoring 
computed so far) as follows. 
Mass source term:              

 ( ) ffiM SMMS −=                                              (13) 

where ( )fi MM − is the droplet mass evaporated during the time step and Sf is a 
scale factor to account the actual mass flow rate of the spray from the droplets 
total mass injected.  
Momentum source terms:   

  ( ) fmffiiP StgMvMvMS ∆+−=                              (14) 
Where Mm is the mean mass during the time step. 
Energy source term:   

    ( ) ( )( )[ ]cfdd,pfimffiifE eeTcMMtQXgMeMeMSS −+−+−⋅+−= ∆δ        (15) 
where ei and ef are respectively the initial and the final droplet kinetic energy, δX 
is the droplet displacement, and ec is the kinetic energy of the continuum in the 
current position.  
     During each droplet trajectory two more scorings are updated in order to 
estimate the droplets volume fraction and the mean droplets diameter in each cell 
[2]. 

4 Results and discussion  

4.1 Turbulence dispersion test 

To verify the accuracy of the code in the turbulence dispersion case in 
homogenous isotropic stationary turbulence (HIST), the results are compared to 
those provided by Graham and James [5]. The test consists in injection of a high 
number of droplets with zero initial velocity in a HIST flow with zero mean 
velocity. The mean squared displacement, for t→∞, opportunely scaled, 
i.e. ( )l

2'2
d

2
d tu2XX τ= , is monitored while varying lr ττ  and el lu2 τα ′= .         
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     For a cylindrical mesh, 2
dX can be viewed either as the squared displacement 

along z or half the squared radial displacement.  
     For this and for all the following cases the cylindrical grid is an angular sector 
(angle π/32) with periodic boundary conditions. The results are resumed in    
Table 1. 

Table 1:  Results HIST. 

 2
dX  [5] 2

dX  (along z) 2
dX   radial) 

lr ττ =0.01;  α=1.2 

lr ττ =10;  α=1 

lr ττ =10;   α=2 

0.99 

0.98 
0.83 

0.99 

0.98 
0.78 

0.99 

0.98 
0.79 

 

 

Figure 1: Volume fraction maps in laminar (left) and turbulent case (right). 

4.2 Qualitative results for one way coupling 

Now we depicted some qualitative results for a one way coupling. The effects of 
breakup and turbulence dispersion are also shown. In all these cases the 
continuum velocity is uniform and directed towards the positive z axis with 
magnitude equal to 1m/s; the initial droplet velocity is equal to 3m/s. The droplet 
size is supposed to follow a Rosin Rammler pdf, while the cone angle of the 
atomizer is supposed to follow a Gaussian distribution; knowing the module of 
velocity (assumed constant in this case) it will be possible to determine the 
velocity of the droplet if it is assumed no swirl at the atomizer exit. 
     Two test cases are performed. The first assuming no turbulence in the carrier 
flow and the second assuming homogenous turbulence. From Figure 1, one can 
notice that turbulence tends to homogenize the volume fraction distribution. For 
the mean droplet diameter in each cell, the influence of turbulence dispersion is 
shown in Figure 2. The heaviest droplets are on the spray periphery in laminar 
case. In turbulent case the heaviest droplets are also on the spray periphery which 
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is nearly spread in all the computational volume. Figure 3 shows the effect of 
breakup on the energy source terms. Breakup generates smaller child particles 
with a slower rτ  which will exchange energy more rapidly. 
     In these cases the number of particles used is 500.000; in order to obtain 
source terms fields enough “smooth”. 
 

 

Figure 2: Mean droplet diameter maps in laminar (left) and turbulent case 
(right). 

 

Figure 3: Energy source terms, without breakup (left) and with breakup 
(right). 

4.3 Qualitative results for two-way coupling 

In this case a complete coupling between continuum and water droplets in 
laminar case is assumed. Two cases have been performed: the first is a surface 
injection parallel to the inflow continuum velocity; the second is a conic point 
injection with injection angle equal to 15 degrees. For both of them the 
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continuum inlet temperature is equal to 320 K, and the droplets temperature is 
equal to 300 K. The continuum velocity is 1m/s and the droplets velocity is 
10m/s. The droplet diameters are assumed to be constant. 
     Results are compared with the ones provided by the Fluent code (Figure 4). 
Here breakup model has not been used since Fluent doesn’t allow breakup for 
stationary cases. The local and total mass and energy conservation have been 
verified at the end of every McSpray and Karalis run. 
     The number of particle used for surface injection is about 106; a high number 
of particles is necessary to have a homogeneous emission from the surface (in 
this case we used a big area of emission, so to obtain a good statistical 
distribution it is necessary to use a great number of particles). For the cone 
injection the number of particle used is 104, this relatively small number of 
particles is due to the small surface of injection (nearly a point). 

4.3.1 Surface injection 
For the first test, two continuum-spray mass flow rate ratios have been tested, 
respectively equal to 5 and 20 (ratio 5 and ratio 20). The results are shown in 
Figure 4 and Figure 5. 
 

      
         

Figure 4: Continuum temperature map for ratio 5. McSpray (left) and Fluent 
(right). 

4.3.2 Cone injection 
For the cone injection the injection point is on the cylinder axes. The 
continuum/droplet mass flow rate ratio is equal to 20. The results are shown in 
Figure 6. 

5 Conclusion  

The Eulerian–Lagrangian simulation of two phase flow with breakup and 
evaporation is performed. The effect of turbulence on spays properties 
(evaporation and breakup) is depicted.  Good results have been found comparing 
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with those provided by Graham and James [5] for HIST flow in one way 
coupling and by the commercial code Fluent for two-way coupling in laminar 
case. As future work, the McSpray code will be extended to account for wall and 
inter-particle collisions. 
 

 

Figure 5: Continuum temperature map for ratio 20.  McSpray (left) and 
Fluent (right). 

 

Figure 6: McSpray–Karalis results (left) and Fluent results (right).              

Nomenclature  

D particle diameter, m 
r  particle radius, m 
md droplet mass, kg 
v droplet velocity, m.s-1 
u continuum velocity, m.s-1 
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We  Weber number, σρ ruWe 2
c=   

X  droplet equator displacement, m 
Y  droplet equator displacement  
Dv  vapor diffusion coefficient, m2.s-1 
Sh Sherwood number  
κ turbulent kinetic energy m2.s-2 
 
Greek symbols  
 
ε turbulent Dissipation, m2.s-3 
µ dynamic viscosity kg.m-1.s-1 
ν cinematic viscosity m2.s-1 
σ droplet surface tension N. m-1 

 velocity response time, s 
 
Indices and exponents 
 
c continuum 
d droplet 
s vapor 
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