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Abstract

Dimensional modeling is a common modeling technique in data warehousing. It
reflects a simple logical view of a data warehouse system. It can be easily mapped
to a physical design. Traditional dimensional modeling is data-oriented and seman-
tically informal. From a software engineering perspective, the informal notations
and data-oriented feature are insufficient to tackle the complexity of large data
warehouse projects. UML, with its well-defined semantics, is now a standard mod-
eling language that is used to model the entire life cycle of a software system.
UML has rich and extensible semantics. The combination of the knowledge in
standard object-oriented modeling and dimensional modeling add variable seman-
tics to dimensional modeling without losing its understandability. This paper pro-
poses a metamodel for data warehouse dimensional modeling using UML. Based
on this metamodel, we illustrate how to model the business process and data marts
of a large mobile telephone company.
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1 Introduction and related work

In recent years, data warehouses have gained increasing popularity and are becom-
ing a business growth strategy. A data warehouse is essentially a data container,
which contains complete and historical business data from numerous operational
sources. The data, as contained in a data warehouse, are used to analyze business,
help predicting the organizational growth and improve customer relationships. In
essence, a data warehouse is a queryable data source that exists to answer ques-
tions people have about the organization. These queries thus reflect the way that
managers think about their organization and assist them to make sense of the data,
form policies and to make informed decisions.
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From the technical perspective, data warehouse modeling is critically important
in a data warehouse system design. One key factor in ensuring the success of a data
warehouse is to create the right model that reflects the business needs and covers
all business requirements. Dimensional modeling [1, 2], popularly known as the
Star Schema approach, is a widely used technique for modeling the logical aspects
of a data warehouse system according to business views. The main idea is to logi-
cally design a data warehouse as a set of incrementally designed data marts, each
representing a view of a business process. A single dimensional model consists of
fact tables and dimension tables. The data warehouse bus architecture [1, 2] then
glues all data marts into a logical data warehouse. This is accomplished through
the use of conformed facts and conformed dimensions, which ensure that the grain
of the various data marts are compatible.

Recently, there are some attempts to model a data warehouse with Unified Mod-
eling Language (UML) [3, 4, 5, 6, 7, 8]. UML is an OMG standard modeling lan-
guage that has been widely used in object-oriented system modeling. It defines a
common vocabulary for communications among designers and users. There also
have been many discussions on modeling database systems using UML [9, 10,
11], focusing more specific on databases (especially for relational databases) rather
than data warehouses. OMG defines a Common Warehouse Metamodel [12] that
can be used to guide common warehouse modeling. It contains limited metamodel
definitions for data warehouse design. But it does not contain a metamodel for
multidimensional modeling. UML notations are rich in semantics but they may be
complex for database modelers. Traditional data warehouse modeling techniques
are straightforward for database teams and reflect the ways that people think about
a database system. But since the traditional notations have little semantics and are
only data-oriented, they are insufficient to tackle a complex data warehouse mod-
eling. Thus, in this paper, we provide a combination of both, that is, using certain
UML notations to represent dimensional modeling. The paper differs from previ-
ous work in 3 major areas:

e We propose a UML metamodel for data warehouse dimensional model-
ing. Although there are many object-oriented dimensional data models, we
haven’t seen any UML metamodels for data warehouse dimensional model-
ing so far.

e We believe UML is useful in modeling the entire software lift cycle of the
data warehouse. One section in the paper shows the business process mod-
eling.

o We define UML notations to model data marts, data warehouse bus matrix,
table grains, foreign keys, and table relationships.

The paper is organized as follows. Section 2 defines a metamodel for UML
dimensional modeling. This metamodel defines semantics for the basic data ware-
house components including fact tables, dimension tables and their attributes.
Based on this metamodel, Section 3 illustrates how to model a data warehouse
involving a large mobile telephone company using UML. Section 4 concludes the
paper and highlights some future research directions.
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2 A UML metamodel for dimensional modeling

A metamodel is a model that describes the syntax and semantics of a model-
ing [13]. It contains descriptions that define the structure and semantics of a model.
Metamodels [12, 13, 14, 15] have been widely used to define models. The meta-
model in this paper is defined under the UML definitions and is derived from the
concepts of adaptive object model [14, 15]. We follow the structure and semantics
of data warehouse dimensional modeling as described in [1, 2].

Figure 1 shows the data warehouse core metamodel. Table defines the basic
construct in the data warehouse. The Table defined in the meta-level contains
Attribute that describes the properties of the Table. The metamodel for
Table and Attribute is defined in the meta-level layer. Any data warehouse
table is an instance of Table. For example, tables such as Product, Customer,
and Date are all instances of Table. A Table instance consists of a set of con-
crete properties such as name and location. Each property has a type, such as
the ConcreteAttribute shown in the figure. The ConcreteAttribute
is an instance of Attribute. The relationship between a concrete table and its
attributes is shown in the base-level layer.

<<MetaClass>> <<MetaClass>>
Table Attribute
Metamodel
(Meta-level) <<instanceOf>>| <<instanceOf>>|
Model

(Base-level) <<Table>> <<Attribute>>
ADatabaseTable ConcreteAttribute

Figure 1: Data warehouse core metamodel.

Fact tables and Dimension tables are two basic kinds of tables in the data
warehouse. Aggregate Fact tables or Factless Fact tables are two spe-
cial cases of Fact table [2, 3, 16]. They differ from a normal fact table in that an
aggregate table contains derived facts (or measures) for performance improvement
purpose, while a factless fact table is a kind of fact table without facts. The relation-
ships among these tables can be organized into a hierarchy tree as shown in Fig-
ure 2. Both Fact table and Dimension table inherit from the Tab1le metaclass.
Aggregate Fact table and Factless Fact table are subclasses of Fact
table. UML stereotypes can be used to describe table types. We use <Fact>>,
<Dimension>>, < Aggregate Fact>>>, and <Factless>> to represent tables Fact,
Dimension, Aggregate Fact, and Factless Fact, respectively.

Each table consists of attributes. An attribute has three members: a string rep-
resentation name, a data type, and a boolean indicating whether this attribute rep-
resents a grain or not. More details about the data type can be found in the UML
metamodel [17]. A grain is the level of granularity (detail) of all properties in a
table. It is crucial that every row in a fact table be recorded at exactly the same
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<<MetaClass>> <<MetaClass>> <<MetaClass>>
Table Fact Table Aggregate Fact Table
Name : String
AttributeList : List<Attribute> <<MetaClass>> <<MetaClass>>
Grain : Attribute Dimension Table Factless Fact Table

Figure 2: Metamodel hierarchy of the data warehouse tables.

level of detail at which measures will be recorded. Figure 3 shows the meta-level
description of the attributes in the dimensional data warehouse.

<<MetaClass>> N

Attribute H> <<MetaClass>>
Table

Name : String
DataType : DataType
IsGrain : Boolean

A
| | |

<<MetaClass>> <<MetaClass>> <<MetaClass>>
Key Measure Degenerate Dimension

| | <<MetaClass>> <<MetaClass>>
rinarkoy | (| someaeamns

VetaCl <<MetaClass>> <<MetaClass>>
<<MetaGlass>> Additive Measure Additive Derived Measure
Surrogate Key

| | <<MetaClass>> <<MetaClass>> <<MetaClass>>
Foreign Key Semi-Additive Measure Aggregate Measure

Pri m;<M:r:2(:l;|grsesi>; Ke <<MetaClass>> <<MetaClass>>
v 9 Y Non-Additive Measure Non-Additive Derived Measure

Figure 3: UML meta-level description of data warehouse attributes.

In addition to normal attributes in a database table, there are three special kinds
of attributes: (1) An attribute can be a key: primary key, surrogate key, foreign key,
or a combination of primary and foreign key. The left-hand side inheritance tree
in Figure 3 shows the attribute key metaclasses. (2) An attribute in a fact table
can be a measure: additive, semi-additive, non-additive, both derived and additive,
aggregate, or both derived and non-additive. (3) In a fact table, an attribute can
be a degenerated dimension. A degenerated dimension is a special attribute that is
lack of properties and can be combined with a fact table. Figure 3 shows the entire
attribute hierarchy tree. We use stereotypes (enclosed in “<>>") to represent items
(1) and (3); Constraints (enclosed in “{}”) to represent item (2) except derived
measure which is adorned with “/”.

This section presented the UML metamodel for data warehouse dimensional
modeling. The metamodel describes the object-oriented model that we propose for
dimensional modeling. In the next section, we will illustrate how to model the data
warehouse based on this metamodel.
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3 Data warehouse modeling with UML

Data warehouse is designed to answer questions being asked throughout the busi-
ness on an every day basis. These questions do not focus on individual transactions
but on the overall process and are mainly used to determine trends and bottlenecks
in the organization. To answer these questions, the design of the data warehouse
should directly reflect the way that managers perceive their business [16]. That is,
it should capture the measurements of importance to the business, and the param-
eters by which these measurements are viewed. We will first discuss the business
process modeling, and then the data mart modeling.

Throughout this section, we will use a mobile telephone company data ware-
house as a running example. The purpose of this data warehouse is to provide a
repository of data regarding the customers and the telecommunications network,
including diverse aspects such as call duration, peak call times, sales of contracts,
sales of mobile phones and customer profiles, amongst others.

Contract Sales
Transactions
Marketing Manager Finance Manager
Call Tracking %

Operation Manager

Sales Manager

Figure 4: Modeling business process functionality.

3.1 Business process modeling

Business process modeling contains 3 steps:

e To capture the stakeholders. In UML, stakeholders are modeled as actors,
i.e. roles that are outside the system but that closely interact with the sys-
tem [18]. Actors are not part of the system. In a data warehouse system, they
can be organization executives, different levels of managers, data warehouse
administrators, etc. They can also be data sources including operational or
transactional systems.

e To capture business requirements. A business process can be represented as
ause case in UML. Each business process can have a number of actors inter-
acting with it. The use case (business process) provides necessary function-
ality for the actors to fulfill some specific tasks. All use cases put together
comprise the entire functionality that the data warehouse provides. We use
UML Use Case diagrams to model the business processes (and require-
ments) in a data warehouse system. Figure 4 shows an example. On the other
hand, a business process can be realized by a data mart, a collection of data
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used by this single key business process. we model data marts with UML
Collaborations and apply Realization relationship to modeling the relation-
ship between the data mart and the business process. Figure 5 shows that
Customer Call Actiwvity datamart, whichis used to model the busi-
ness process use case Customer Call Activity.

e To model data warehouse bus matrix. Table 1 shows a simplified data ware-
house bus matrix for the mobile phone company, created for the use case
diagram shown in Figure 4. The first column in the table represents the data
marts, and the others represent dimension tables. A cross represents that a
dimension participates in a data mart. A corresponding UML representation
is showed in Figure 6.

Customer Call S " Customer Call Activity \\)
Activity ANy Data Mart -

Figure 5: Modeling relationship between the use case and the data mart.

Table 1: Data warechouse bus matrix.

Date | Customer | Product | SalesRep | Store | Promotion | Transaction
Contract Sales | X X X X X X X
Call tracking X X X
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l<<Dimension>>|
Transaction

<<Dimension>>|
Promotion

<<Dimension>>|
Store

l<<Dimension>>|
Sales Rep

~
<<Dimension>>|
Product

<<Dimension>>|
Customer

l<<Dimension>>|
Date

Figure 6: Modeling data warehouse bus matrix.

3.2 Modeling the data mart

A data mart reflects a process view of the data warehouse. It implements a data
warehouse use case. A data mart contains a set of tables, for example, a fact table,
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aggregate tables (if any), and dimension tables, that are organized together into a
star schema to represent a specific business process. Since the modeling of the fact
and dimension tables in the data mart are straightforward based on the metamodel
definition, we only show an example of basic modeling of the data mart and then
discuss a few special cases in the data mart modeling.

Figure 7 shows an example of modeling of the Contract Sales data mart.
The fact table is modeled as a composite class in the diagram. It has shared-
aggregation relationships with the corresponding dimension classes. The role of
a dimension class represents a reference from the fact class to a dimension class.
The role has a name, which is the name of the surrogate key of the dimension
class (or the foreign key name in the fact table for that dimension table). Fact class
Sales links to Time dimension class which plays the role of “time_key” in the
fact table. The “time_key” is also the surrogate key name in the Time dimension.
The grains of the dimension and fact tables are shown in separate compartments
of the class icons. The cardinality for the relationships between the fact class and
the dimension classes are marked besides the table links. “1” represents exact one.
“*” represents zero or more.

' Contract Sales Data Mart << Dimension>>
T — Product
Vd
i {SK} product_key
<< Dimension>> gESC(I;IptIOn
Time S c;?;]gory
N << Fact>>
{SK}time_key | o 4o * Sales b -
day_of_week ey N << Grain>>
month dollars_sold N Product
quarter 1 units_sold N
year dollars_cost ™\ << Dimension>>
holiday_flag << Grain>> Store
<< Grain>> Day, Product, Store (SK] store_key
Day . store_name
store_key | address
floor_plan_type
1 << Grain>>
Store

Figure 7: Modeling contract sales data mart.

We cover 3 special cases of data mart modeling:

e Model multiple foreign key relationships. We represent each foreign key as a
shared-aggregation relationship. Figure 8 shows the shipment fact class has
two foreign keys, shipment_date_key and order_date_key, each representing
as a shared-aggregation relationship linking to the Date dimension.

e Model many-to-many relationship between tables. Figure 9 shows an exam-
ple of using a bridge table Account -Customer (adapted from [2]). This
table contains a composite primary key with one account_key refers to the
account table and the other customer _key refers to the customer table. In such
way, the Monthly Account Balance table refers to the Account -
Customer bridge table through the account_key and the customer_key in
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<<Dimension>>

Date
<<Fact>> * shipment_date_key
Shipment_facts 7| (SK} date_key
date
{FK} shipment_date_key order_date_key | day_of_week_number
{FK} order_date_key 7] day_of_week_name
...... * day_of_month

month_number
month_name
fiscal_period
year

Figure 8: Modeling multiple foreign key relationships.

<<Dimension>>

Date
<<Fact>> * shipment_date_key
Shipment_facts 7| {SK} date_key
date
{FK} shipment_date_key order_date_key | day_of_week_number
{FK} order_date_key 7 day_of_week_name
...... * day_of_month
month_number

month_name
fiscal_period
year

Figure 9: Modeling many-to-many relationship.

the bridge table refers to one customer in the Customer table. Since
account key in the bridge table does not uniquely identify a record (it is
part of the primary key), each record in the fact table can refer more than
one customer in the Customer dimension.

e Model aggregate fact table. A common convention in data warehouse mod-
eling is to pre-store aggregate data in the data warehouse (for performance
improvement). Figure 10 gives an example of using the aggregate fact table.
First, a new dimension called Category is created as a shrunken table of
dimension Product. It only contains the product key (surrogate key), cate-
gory, and department. The surrogate key here is only a subset of the product
keys in dimension Product with each representing a category product. We
subsequently create an aggregate class called Sales_by_Category. In
this class, each row contains data such as time, store, product category, as
well as some measures such as dollars sold, quantity sold, and dollars cost
along the time, store and product category dimensions. The directed dashed
lines represent dependency relationships. This is due to the fact that Cat -
egory is a subset of Product, and Sales by_Category is calculated
from Sales.

4 Conclusion

Modeling a data warehouse is a complex task due to a number of complex fac-
tors, including the huge size thereof, the constraints imposed by operational data
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time_key - - time_key * << Aggregate>>
Di
] == ”—?ﬁ?on» ] <> sales by Category
* ‘ dollars_sold L

ot store_key 1 ~ units_sold
<< Fact>> < :
dollars_cost
Sales * store_key | << Dimension>>
dollars_sold & 1 Store :
units_sold 1
dollars_cost product_key
i " << Dimension>> << Dimension>>
| Product Category
} product_key
| ] {PK} product_key {PK} product_key
} description category
| brand department
i category
I

Figure 10: Using the aggregate table.

sources and the complex business requirements as obtained from numerous users,
amongst others. Dimensional modeling separates business concerns and addresses
one business need at a time. The purpose of dimensional modeling is to bridge
the communication gap between domain users and data warehouse developers.
Howeyver, a traditional dimensional model is a data-driven model. It contains little
semantics for notations and it is therefore difficult to embed the inherent mean-
ing of the data and data relationships therein. Data warehouse developers therefore
have difficulty in understanding the subtle meanings of conformed dimensions and
facts, which may lead to poorly designed data warehouse systems.

This paper proposes an approach to represent the dimensional model in a seman-
tically rich manner. As a standard modeling language, UML provides rich and
extensible semantics to a model. With the UML as the foundation, this paper pro-
poses a metamodel for dimensional modeling, in which we define a vocabulary
to model basic data warehouse concepts using UML notations. The metamodel
extends the UML metamodel. It defines the object-oriented dimensional model
that we propose. Based on this metamodel, we model the business processes and
requirements, and the dimensional model with data warehouse bus matrix and
data marts. The modeling diagrams are easy to understand without losing explicit
semantics.

This paper shows how dimensional modeling can be extended using object-
oriented modeling techniques, thus providing a foundation for modeling the logical
core of a data warehouse system. Future work will focus on extending the model to
capture the entire business life cycle of a data warehouse, including its behavioral
modeling and physical modeling. In addition, the extension of UML diagrams for
modeling misuse of the data warehouse will be further investigated. That is, the
investigation of approaches to design our system is such a way to anticipate and
model the illegal use of the data warehouse is an exciting new research direction,
especially within the domain of so-called data webhouses.
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