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Abstract

A boundary integral technique has been developed for two-dimensional,
free surface flows in complex geometries in hydraulic engineering. Based
on the assumption of steady, ideal, irrotational flow in a channel a system
of integral equations, which are valid on the boundaries of the solution do-
main, have been derived using the theory for mixed-boundary problems of
an analytical function. The boundary integral equations are solved for the
velocities on the solid boundary and the free surface, the shape of the free
surface and for the the critical Froude number for which waves first occur.

1 Introduction

The free surface flow of an incompressible, irrotational and inviscid fluid
under the force of gravity has been the subject of considerable research in
hydraulic engineering over many years. In last three decades both the finite
element method and the boundary element method*'^ have used to solve the
free surface flows over complex geometries in numerous hydraulic engineer-
ing applications. King and Bloor* considered the steady, two-dimensional
free-surface flow of an incompressible, irrotational and inviscid fluid flow
over a fixed solid rectangular step using the conformal mapping technique,
based on a modified Schwartz-Christoffel transformation. Through the use
of the exact free-surface condition a non-linear, integro-differential equation
was formulated and solved for the free surface flow over a step when the
upstream flow is both supercritical and subcritical. Forbes"*, who used a
boundary-integral method, investigated the flow over a semi-circular ob-
struction in a channel, whilst Dias and Vanden-Broeck^ obtained solutions
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438 Hydraulic Engineering Software

to both subcritical and supercritical free-surface flows past a triangular ob-
stacle by a series truncation method. In this paper a numerical boundary
integral technique, as developed by Wen and Wu^ and Wen and Ingham7,
has been employed to study the free-surface flow over a step in a channel.

2 Formulation of the boundary-integral equation

In this paper we consider the gravity-influenced two-dimensional steady, in-
viscid and irrotational fluid flow over a step in channel. At large distance
upstream of the step the flow has a constant speed of U^ and the depth
of the fluid is h and the fluid flows horizontally in the positive x direction.
At x = 0 there is a step which is inclined to the horizontal at an angle (3
until it reaches a height hg and then the surface is horizontal. Figure la
schematically shows the physical situation investigated, where A^D^ is
the upper free-surface of the flow, the solid boundaries A^B and CD^ are
horizontal and BC is a straight line at an angle (3 to the x axis. Without any
loss of generality we choose the streamfunction 1/)=0 on the solid boundary
and then ty — q — hU<^ on the free surface A'̂ D'̂ .

y

T(S)

U
A_

A

Figure la: The free surface flow over a step.

A coordinate system z — x -f zy is introduced with the x axis along
AooB and y is measured vertically upwards. The complex velocity potential
is defined by w = (f) + i"0, where <f> is the velocity potential. Along the free
surface Â D'̂  we apply Bernoulli's equation which gives

(i)

or
+ 2(1 - yf/h)/F?

where Uf is the fluid speed on the free surface, Fr — <
stream Froude number, and g is the acceleration due to gravity.

We next consider the complex velocity

dw/dz = ueT^

(2)

\fgh is the up-

(3)
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Hydraulic Engineering Software 439

in which u is the fluid speed and 0 is the angle that the fluid velocity vector
makes with the positive x axis. Then we obtain

H = ln(— —) = ln[-—e~^} = r — lO (4)
L/oo dz L/oo

where H is the logarithm of the complex velocity and r — ln(u/ C/oo), and r,
dw Idz and H are analytical functions in a strip of the w-plane, see Figure Ib.

A '

8 = 0

B C

Figure Ib: The w-plane.

6 = 0 9 = 0

B C D_,D_'

Figure Ic: The t-plane.

The infinite strip in the complex w-plane is now transformed onto the
upper half-plane of the auxiliary plane, namely t — ( -f irj, by applying the
mapping function, see Figure Ic, namely

t = -e-f" (5)

For the Riemann-Hilbert mixed boundary-value problem®, the boundary
conditions on the real ( axis of the i-plane are as follows:

On, (( < -1), = 0, (6)

(7)

CD < ( < 0), = 0 (8)
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440 Hydraulic Engineering Software

By referring to the general solution of the Riemann-Hilbert problem® we
obtain the solution of H in the form

(10)

where X(i) — (\f—i) is the homogeneous solution of 0(t) when its real part,
%eO, and the imaginary part, 9mO, are equal to zero on the real axis (.
When t approaches the real axis ( from the upper half plane, the value of

on the real axis (" is given by

' ( < 0 (11)

00 (12)

On taking the Cauchy Principle Value and separating the real and imag-
inary parts of fi(Co), the velocity on the solid boundary A^D^ is:

/-too r((] 1
fJ(ff^\ C

Jo vc(C - Co) J
<0 (13)

/-iv^C-Co)

and the angle that the free surface A'̂ D'̂  makes with the horizontal is

C > 0 (14)
-Co)

Now we take the arc length 5 to be the independent variable. Thus we
have, from equation (5),

on

,. " --<£(S) / \ 7 -p
u£ — e ? ^ 'u(s)ds on L 2

q

where FI and F] are the solid boundary A^D^ and the free surface A'^
respectively. Along the free surface and solid boundary we have

d(j)(s)/ds — u(s]

which on integration gives

f\(l}dl
JO

(15)

(16)

(17)

(18)
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Hydraulic Engineering Software 441

where we have taken the value of the potential function at the points A and
A' to be equal and c/>̂  to be the value at the point A^.

The coordinates of the free surface are then given by

3(4 = 2,4,+ rco30(Z)dZ (19)
Jo

and
y(s) = y* + \ ŝ n6(l)dl (20)

Jo
where y# and XA> are the coordinates of the point A^.

In the physical plane we may rewrite equations (13) and (14) as follows:

tf«

k
s € (21)

yc(4

9

/
[A,

in which

In equations (21) and (22

" t -(3 c-T«V/

'̂ "̂%I 1

\/e(0[e(o - ewf '

C(0 = -e'?̂  on I\

C(/) = e-̂ 0 on F:

), r(/) is calculated by using equa

)di

5 e r^ (22)

(23)

(24)

rion (2), namely,

(25)

The equations (18)-(22) are the boundary integral equations for the po-
tential function 0(s) on the boundaries, the coordinates of the free surface,
2(5) and 2/(s), the fluid speed, %(s), on the solid boundary and the free
surface and the angle, 0, on the free surface, respectively.

3 The iterative procedure

The integral equations (18)-(22) are solved by employing the numerical it-
erative procedure developed by Wen and InghanV as follows:
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442 Hydraulic Engineering Software

(a) Assume an initial profile for the free surface F]. Distribute the grid
points on the solid boundary I\ and the free surface T^.

(b) Assume an initial fluid speed distribution u™(s) (= C/oo, say) on the
solid boundary AB. Initially n— 0.

(c) The fluid speed, uf'(s), on the free surface ?2 is calculated by using
equation (25). Then <£™(s), on I\ and ?2 is calculated using equation (18).

(d) On substituting the values of /?, uj'(s) and (f>™(s) into the right hand
sides of equations (21) and (22), new predictions for the fluid speed, u™+*(s),
and the angle of the free surface, 0̂ +*(s), are obtained.

(e) Using expressions (19) and (20), a new prediction for the free surface
profile is determined.

(f) Steps (c) to (e) are repeated until the fluid speed, î (s), and the
velocity potential, <̂ (s), converge to within some specified limits.

4 Numerical results and discussion

The numerical calculations were performed for a step of variable height and
inclination when the upstream Froude number is great than unity. Partic-
ular attention has been paid to the effects of varying A,,, (3 and Fr on the
free surface profile. One of the main interests in this paper is also to reveal
the mechanism for the occurrence of waves on the free surface.

y/h

2r-.5

2.0

1.5

1 r \.0

0.5

On.U

7 Upstream Froude Number;
: (a) 2.3

^ ̂ ^ ^
: (04.0 //"
; (d) Infinity P̂

"l ,,,,,,, r I 1 . . . . . . 1 1 I 1 1 . < .• 1 1 1 1
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ẐZ
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i i i . . . . . . . . .
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Figure 2: The free surface profiles for Froude numbers of oo, 4.0, 3.0 and
2.3 when the step height is unity and the step angle is Tr/2.

Figure 2 shows a comparison of the free-surface profiles for different up-
stream Froude numbers of oo, 4.0, 3.0 and 2.3 over a step when hg/h = 1.0
and for a step angle of (3 = Tr/2 where it is served that there is a monotonic
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Hydraulic Engineering Software 443

increase in the height of the free-surface as the upstream Froude number
reduces from infinity to 2.3.

Solutions for the fluid flow over a range of step angles, namely ?r/8, vr/4,
7T/2, for an upstream Froude number Fr = 3.0 and h^/h = 1.0 are given in
Figure 3. In comparison with Figure 2, a feature that stands out in Figure
3 is the change in the shape of the free-surface as the step angle increases.
The shape of the free-surface shows the greatest change is in the region
just above its corresponding step and on increasing the angle of the step
produces a steeper free surface near to the step.

0.0

Figure 3: The free surface profiles for a Froude number of 3.0 when the
step height is unity for step angles Tr/8, ?r/4, Tr/2.

Figure 4 shows a comparison of the free surface profiles for an upstream
Froude number of 2.0 over step of height h^/h — 0.2, 0.4 and 0.6 and
0.6188, and a step angle of (3 — Tr/2. As the step height increases the
free surface height increases. When hs/h — 0.2, the maximum free surface
height obtained by King and Bloor* was found to be yf/h = 1.2744 which
compares favourably with the present prediction of y//h = 1.2777. Other
values for the greatest free-surface elevation for step heights of 0.4, 0.6
and 0.6188 are also in good agreement with the values obtained by King
and Bloor but these values can only be found by reading values from their
figures. The maximum step height reached by King and Bloor was 0.6188,
above which no solution could found. It led them to conclude that when the
height is larger than this value then waves must occur on the free surface.
Forbes^ suggested that waves occur at some point at which the angle of the
free surface is 30°. However, the calculations of King and Bloor^ did not
support this suggestion and neither did our calculations. In our calculations
the convergence of the iterative scheme becomes very difficult when the
height of the step is slightly larger than 0.6188. A question of particular
importance is what is the mechanism which leads to wavelike free surface
flows and what is the critical step height at which waves first occurs. In
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444 Hydraulic Engineering Software

order to reveal this mechanism we define the local Froude number as

(26)

where T/&(z) is the coordinate of the solid boundary, and therefore,
t/fe(x) is local depth of fluid.

y/h

2.0

1.5

1.0

0.5

0.0

Step Height;
(a) 0.6188
(b) 0.6
(c) 0.4
(d) 0.2

-6 -4 -2 2

x/h

10

Figure 4: The free surface profiles for a Froude number of 2.0 when the
step height is 0.2, 0.4, 0.6 and 0.6188 and the step angle is ?r/2.

Figure 5 shows the variation of the local Froude number Fr;(z) as a
function of the x co-ordinate for Fr = 2.0 at four different step heights,
namely h,/h = 0.6058, 0.6159, 0.6208 and 0.6245. The value of Fr/(x) for
all four curves far upstream of the step is 2.0, and as expected, each curve
follows a similar path until the flow reaches the vicinity of the step. Infront
of the step the local Froude number is always larger than unity. Beyond the
step, the local Froude number rapidly decreases as the free-surface height
increases. When the step height is less than 0.6058 the local Froude number
monotonically decreases and it takes a minimum value far downstream of
the step. However, when the step height reaches a 0.6058, then the local
Froude number reaches a minimum somewhere downstream of the step and
then begins to increase monotonically to its asymptotic value. When the
step height is less than 0.6208 the local Froude number is always larger than
unity and this indicates the the whole fluid flow is supercritical. When the
step height is 0.6208 then the minimum value of the local Froude number
is unity at x — 14.5. When the step height is slightly larger than 0.6208,
say hs/h — 0.6245, the local Froude number is less than unity in a large
region, namely when x < 5.75 the flow is supercritical , when x = 5.75 the
flow becomes subcritical and becomes again supercritical at x = 14.5. As
is well known, waves occur when flow transfers from being supercritical to
subcritical. Therefore, we conclude that for step heights less than 0.6208
then the minimum local Froude number is larger than unity and no waves
may occur on the free surface. However, for step heights larger than 0.6208
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Hydraulic Engineering Software 445

the minimum value that the local Froude number takes is less than unity
and waves must occur. Clearly, the critical step height is hg = 0.6208,
where the minimum of the local Froude number is unit. This value is very
close to the critical height of 0.6188 predicted by King and Bloor, which
indicates that transition of flow from superctical to subcritical is the reason
why no solution could be found by King and Bloor when the minimum
value of of local Froude number becomes less than one. Close agreement
in the predicted maximum step height as obtained by both sets of results
suggests that when the local Froude number reaches a value of unity, we
can predict the critical step height and the maximum free-surf ace elevation
over a step at different inclinations in the transitional region of subcritical
and supercritical free-surface flow.

2.04
Step Height; (a) 0.6058

(b) 0.6159
(c) 0.6208
(d) 0.6245

Figure 5: The local Froude number as a function of x-axis for free surface
flows for an upstream Froude number 2.0 and step angle Tr/2 for hg/h

0.6058, 0.6159, 0.5208 and 0.6245.

2 3 4

Upstream Froude number, Fr

Figure 6: The local Froude number for free surface flow when the
upstream Froude number is 2.0 and the step angle is ?r/2.
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446 Hydraulic Engineering Software

In a similar manner to that described in the previous paragraph, the
critical step height hc/h for various values of upstream Froude numbers
have been calculated for free-surface flow over a step of inclination (3 — 7T/2.
Figure 6 shows the critical step height as a function of the upstream Froude
number and this indicates that the critical height is zero when Fr = 1.0 and
it increases as the upstream Froude number increases.

5 Conclusion

A boundary integral technique has been developed for two-dimensional,
free surface flows over a step in a two-dimensional channel and it has been
applied to predict the free-surface profiles when the upstream flow is super-
critical, namely, Fr > 1.0. The mechanism for the occurrence of waves on
the free surface is revealed by considering the local Froude number. This
indicates that the criteria for waves to start to occur is that the local Froude
number reaches a value of unity.
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