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Abstract 

Consideration is given to Atwood number (non-dimensional density difference) 
effects in buoyancy driven flows. Buoyancy driven (natural convection) flows 
may be treated as Boussinesq for small Atwood number, but as Atwood number 
increases (>0.1, i.e. large temperature differences) the Boussinesq approximation 
is no longer valid and the distinct “bubble” and “spike” geometry of Rayleigh–
Taylor buoyant plumes is formed. Aside from asymmetry in the flow the Atwood 
number also affects key turbulent mix parameters such as the molecular mix, and 
heat transfer coefficients. This paper will present recent experimental work being 
performed in the buoyancy driven mix laboratory at Texas A&M University with 
air/helium as mixing components. Corresponding numerical simulations 
performed at Los Alamos are presented for the experiments, and future directions 
for the research discussed. 
Keywords:  buoyancy, Boussinesq, Atwood number, natural convection. 

1 Introduction 

This paper describes experiments and corresponding simulations to investigate 
non-Boussinesq effects at high Atwood (At) number (At ( ) ( )2121 ρρρρ +−≡  a 
non-dimensional density ratio) in buoyancy driven turbulence (Rayleigh-Taylor 
mixing).  The Boussinesq assumption for buoyancy driven flows states that 
density difference effects need only be accounted for in the gravitational terms, 
and density may be taken as a constant elsewhere in the equations. At small 
Atwood number (At<<1) the Boussinesq approximation is valid, however, at 
large At (~1) it implies a symmetry to the flow that is contrary to the familiar 
bubbles and spikes of water falling out of a glass. Here we explore the limits of 
the Boussinesq approximation. 
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     An incompressible experiment is described that employs air/helium for 
At=0.035 (small At), and for At=0.26 (high enough to see some asymmetry). 
Simulations have also been performed on the computer using the MILES 
(Monotone Integrated LES) method, Youngs [1], and compared with 
corresponding experiments. Additional simulations have been performed to 
explore At effects up to At=0.9. At small At the buoyancy driven mix develops 
symmetrically indicating the Boussinesq approximation is valid. However, at 
high At number (>0.1) asymmetries in the turbulent mixing become apparent and 
indicate that the Boussinesq approximation is not appropriate for At>0.1. 
Consequences for natural convection and high temperature gas heating/cooling 
problems are discussed. 

2 Experiments 

2.1 Experimental facility 

A schematic of the experiment is shown in Figure 1. The experimental facility 
was a wind tunnel, with a splitter plate that separates an upper air stream ( 1ρ ) 
from a lower air/helium stream ( 2ρ ). The stream velocities were kept the same 
to avoid shear, and great care was taken to obtain a constant and controllable 
helium flow rate. Thus, by pre-mixing air and helium for the lower stream the 
density difference between the upper and lower streams could be varied from 
At=0 (air top and bottom), up to At=0.75 (air on top, and helium on the bottom). 
More details of the experimental set-up can be found in Banerjee and 
Andrews [2]. For future reference, the vertical depth of the channel is 1.2m, and 
out-of-plane width is 0.6m. By introducing smoke into the upper channel and 
using a calibration wedge the density profile can be measured from digital 
photographs, see Banerjee and Andrews [2]. 

 

Figure 1: Schematic of the experimental facility. 
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2.2 Experimental details 

Two experiments are reported in this paper corresponding to At=0.035 and 
At=0.26. Table 1 reports the experimental conditions (note the stream velocity, 
U, is higher for At=0.26 to keep the spread angle small, and hence a parabolic 
flow). Use of Taylors’ hypothesis relates distance downstream (x) and time (t) as 
t=x/U, and this time is also reported in Table 1. 

Table 1:  Experimental parameters. 

At U (m/s) x (m) t (s) 
0.035 0.6 0.75 1.25 
0.035 0.6 1.4 2.33 
0.035 0.6 1.75 2.92 
0.26 1.2 0.5 0.42 
0.26 1.2 1.5 1.25 

 

3 Governing equations and numerical details 

3.1 Governing equations 

The incompressible Euler equations are used in conjunction with the MILES (see 
below for more details) modeling technique: 
 
Volume conservation: 0=•∇ u            (1)
Scalar transport: 

0=
Dt
Df  

          (2)

Momentum: ( ) gρρ
+−∇= p

Dt
uD  

          (3)

 
with the fluid velocity ( )wvuu ,,= , density, ρ , pressure, p , and gravity, 

( )zgg ,0,0= , and scalar f . There are six independent variables and five 
equations, the seventh equation is a linear equation of state for density such as 

( )fL=ρ . In the present work we take f  to be the non-dimensional density, or 
mixture fraction, defined as ( ) ( )212 ρρρρ −−=f . 

3.2 Numerical solution procedure 

3.2.1 Overview 
For the present experiment we have used MILES, namely, Monotone Integrated 
LES. MILES modeling involves solving Euler governing equations and using 
numerical diffusion to model turbulent diffusion. Success with this modeling 
technique for buoyancy driven flows has been reported by Youngs [1]. 
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     The governing equations presented above are a coupled set of partial 
differential equations for which there exist several solution procedures. The 
present work solves the governing equations using the RTI3D code described by 
Andrews [3]. In particular, a fractional time step technique is used in which for 
each time step an advection calculation is followed by a Lagrangian source term 
update.  The Lagrangian update is presented next, and this is followed by a brief 
description of the advection step for the scalar f  (details may be found in 
Andrews [3]). 

3.2.2 Lagrangian momentum source term updates 
The Lagrangian w momentum equation is: 

  ( ) z
n
T

n
P

t

n
n

*
n gpp

∆yρ
∆tww +−+= + 21              (4) 

The n+1/2 superscript refers to a value from the advection calculation, and * to 
an intermediate value that does not necessarily satisfy continuity. The subscripts 
refer to spatial position (north face), typical of the SIMPLE method 
(Patankar [4]), and a staggered arrangement of momentum and mass cells is 
used.  Following the SIMPLE practice, velocity corrections are defined so that 

eiei
n

ei uuu ,
*
,

1
, ∆+=+  (and similarly for the other velocities) and a new pressure 

p
n
P

n
P ppp ∆+=+1  where p∆  is a pressure correction. By substituting these 

expressions for n+1 into the volume conservation equation and then subtracting 
equation (4) evaluated with the * we arrive at the usual Poisson equation for 
pressure corrections: 
 

  Divpapapapapa SSNNWWEEPP −=∆+∆+∆+∆+∆            (5) 
 

with Div  the divergence of the * velocity values. The Poisson equation (5) is 
solved using a Full Multi-Grid method, and the pressure corrections are used in a 
SIMPLE style to provide updated n+1 velocities and pressures that 
simultaneously satisfy the momentum equations (3) and volume conservation. 

3.2.3 Transport procedures 
The 3D transport procedures are split into x/y/z-steps, this fractional splitting 
simplifies the calculation to one-dimensional updates that lends itself to high 
order calculation of cell fluxes with the Van Leer [5] method.  There follows a 
brief description of the scalar x-step advection, the y and z steps being similar, 
and similar advection steps are performed for the momentum. 
     The x-step advection for the scalar is given by: 
 

   ( )wwee
n

PP fufutzyff −∆∆∆+=*             (6) 
 

where P refers to the center of a control volume, e the east face, and w the west 
face. The face values for the u velocities are available, and the face values for the 
scalar are computed using a second order approximation with Van-Leer limiting 
to prevent non-physical oscillation as: 
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   ( )
e

e
eupwinde Dxsignff ∆

−
+=

2
1)( εε            (7) 

where xut ee ∆∆=ε , and upwind values are taken according to the sign of eε . 
The derivative is evaluated following Van Leer as: 
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Van Leer limiters have been used in equation (8) to limit the gradient of the 
volume fraction profile, thereby preventing spurious oscillations. The 
representation for the gradient of the cell profile D  determines the accuracy of 
the representation. 
     In the present work ( ) ( )xD we ∆∆+∆= 2  , so the gradient is computed with a 
central difference so this scheme is referred to as “2nd order”. 

3.3 Computational details for simulation of the experiments 

The experiments are performed in a statistically steady gas channel, but are 
modelled on the computer using transient simulations that are related to the 
experiment through the Taylor hypothesis described above. The computational 
domain is taken to be 1.2m high (z), and 0.6m square (x & y), with a 
computational grid of 64x64x128 (x-y-z). The computational time step is selected 
by the computer program to keep the Courant number below 0.25. Initial 
conditions for the simulations are prescribed to fit the density interface off the 
splitter plate. Here we use the following initial density interface perturbations: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ykxkdykxkc

ykxkbykxkahyxh

yxkyxk

kk
yxkyxkw

yx

sinsincossin

sincoscoscos),(
,

+

+++= ∑
 (9) 

where the spectral amplitudes are chosen randomly but give an rms amplitude of 
0.6m/100, and the wave numbers range from modes 8 to 16 (Dimonte et al. [6]). 
The wake off the splitter plate is modelled as an initial perturbation, wh , where 

( )ykxkah wwww cos)sin(= ; the wavelength associated with the wave number wk  
is 1cm and is taken from inspection of the experimental photograph in Figure 2, 
and the amplitude is 0.5cm, again taken from Figure 2. 

4 Results and discussion 

Figure 2 is a photograph taken from the At=0.26 experiment. On the right at the 
mid-plane is the splitter plate. The air/helium streams move from right to left, 
and the buoyancy driven mix is seen to develop downstream. On the far left of 
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the photograph (2m from the splitter plate) the mixing has expanded to the top 
and bottom of the channel (i.e. a total depth of 120cm). The photograph shows a 
well mixed region with a wide range of mixing length scales. Close inspection of 
the region close to the end of the splitter plate, reveals initial perturbations of 
wavelength about 1cm, and amplitude 0.5cm, associated with wake shedding. 
 

 
 

Figure 2: Photograph from At=0.26 experiment. 

     Figure 3 below shows plots of initial density interface (on the left) used for 
the At=0.035 simulations (and is the same for all the simulations), and it is 
evident that there are both short and longer wavelength disturbances 
corresponding to conditions at the end of the splitter plate. The right side of 
Figure 3 shows the mix edges interfaces at f=0.01 (lower surface) and f=0.99 
(upper surface), and corresponds to a distance downstream of 175cm (near the 
left side of the photograph in Figure 2). Comparison of the computed and 
experimental disturbances in Figure 2 and the right of Figure 3 shows more fine 
scale in the experiment, and this is because of computational grid resolution. 
 

 
 

 

 

 

Figure 3: Initial conditions and late time (t=2.92s) mixing edges for 
At=0.035. 
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     Calibration of digital photographs provided time averaged non-dimensional 
density profiles (the scalar fraction, f) and these are shown in Figures 4 and 5, 
with the corresponding results from the simulations using MILES. Comparison 
in Figure 4 for an At=0.035 of the experimental density widths and profiles with 
the corresponding simulations is good, and in particular the almost linear density 
profile across the mixing region is well captured by the MILES simulations. Also 
of note is that the experimental mix is symmetric around the centreline, 
indicating that the Boussinesq approximation is valid for an At=0.035. Similarly, 
in Figure 5, comparison of experiment with simulation for the At=0.26 show they 
also agree quite well. However, the experiments and the simulations show a 
slight asymmetry, associated with the higher At=0.26, that perhaps best seen by 
inspecting the penetration at the edges of the mix in Figure 5. 
 

 

 
At=0.035 Experiment 

 
At=0.035 Simulation 

Figure 4: Comparison of mix profiles for At=0.035. 

 

 

 
At=0.26 Experiment 

 
At=0.26 Computation 

Figure 5: Comparison of mix profiles for At=0.26. 

     To explore higher At (i.e. large density differences) two additional 
simulations have been performed for At=0.5 and At=0.9. To facilitate 
comparison, the product At*gz was held constant at the value for the At=0.035 

2h h1
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case, so At*gz=-0.34335 ms-2, and the value of gz then computed for each value 
of At, so for At=0.5 a value of gz=-0.6867 ms-2 was assigned, and for At=0.9 the 
value was gz=-0.3815 ms-2. This scaling comes from consideration of the 
gravitational term in the governing equations. To gauge asymmetry the bubble 
penetration, 1h , and spike penetration, 2h , were computed as the distance from 
the centreline to the values of 99.0=f  and 01.0=f  respectively (see Figure 5 
for a graphical representation at t=1.25s), and their ratio is plotted in Figure 6. 
Inspection of Figure 6 reveals that there is practically no asymmetry for 
At=0.035, however, asymmetry is clearly seen for At=0.5, with the spike/bubble 
penetration being about 1.2 near the end of the calculation at t=2s. Indeed, there 
is a strong asymmetry for At=0.9 with h2/h1=1.7 by t=2s. Figure 7 plots the edges 
of the mix region, in a similar fashion to Figure 5, for each of the cases at t=2s. 
The At*gz scaling ensures a comparison at similar development of the mix. 
Comparison of the mix edges for At=0.035 with At=0.5 in Figure 7 shows little 
difference in bubble and spike penetration. However, for At=0.9 the asymmetry 
is clear, with bubbles clearly shown at the top, and finger shaped spikes at the 
bottom. 

 

Figure 6: Spike to bubble penetration (h2/h1) asymmetry for increasing At 

     Results from the simulations show that significant departures from the 
Boussinesq approximation occur by At=0.5, but are not particularly evident at 
At=0.26. This suggests that the Boussinesq approximation is reasonable for pure 
buoyancy flows at least for At<0.1, and perhaps as high as At<0.3. In terms of 
hot/cold gas flows, for an ideal gas at constant pressure the density ratio 21 ρρ  
corresponds to a temperature ratio of cold to hot, and for At=0.1 the density ratio 
is 1.22/1, or temperature ratio of 1000K/1220K; for At=0.3 the density ratio is 
1.86/1, or 1000K/1860K. Thus, it would appear for many free convection 
problems the Boussinesq approximation would be valid. However, for 
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combustion problems and other problems associated with large temperature 
differences, the full set of equations should be solved when in the presence of a 
body force (e.g. gravity or centrifugal). 
     We close with a few words of caution – for accurate comparison of 
experiment and simulation we need better characterization of the initial 
conditions, i.e., the initial spectrum being shed from the splitter plate. In 
addition, our use of a 64x64x128 grid should be considered a coarse resolution, 
and additional calculations should be performed for higher resolution to confirm 
the results. 
 

 

Figure 7: Mix edges as a function of At. 

5 Conclusions 

A buoyancy driven mix experiment has been described, with corresponding 
simulations on the computer. Results from experiments at Atwood (At) numbers 
of 0.035 and 0.026 have been compared with corresponding MILES simulations 
and found satisfactory. Additional simulations at high At of 0.5 and 0.9 reveal a 
strong asymmetry in the buoyancy driven mix that indicates the Boussinesq 
approximation is no longer valid. However, the results suggest that the 
Boussinesq approximation is valid at least for At<0.1, and perhaps as high as 
At<0.3. Additional work is required to match the initial conditions of the 
experiment, and to perform additional simulations with higher grid resolutions to 
provide further refinement on the At criteria proposed. 
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