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Abstract 

The paper proposes a topology optimisation methodology based on optimality 
criteria to solve structural and thermal problems. The results of its application to 
the optimal design of the brackets linking the Meteor & Debris Protection 
System panels to the main structure of the ISS module Columbus are shown. 
Keywords: topology optimisation, optimality criteria, Von Mises stress, heat flux. 

1 Introduction 

The description of many physical problems leads to partial differential equations 
which have to be integrated under initial or boundary conditions [1]. In many 
cases it is possible to replace the problem of integrating a differential equation 
set by the equivalent problem of seeking a function which gives a minimum 
value to a variational functional. General rules for deriving natural variational 
principles from linear differential equations are described in Mikhlin [2-3]. If a 
closed domain 3RΩ∈  with a smooth boundary Γ is considered, a physical 
problem can be described by a linear system of differential equations: 

 0=+= bLuA(u)  (1) 

in which L is a self-adjoint linear differential operator and u is a function defined 
in the closed domain Ω leading to the definition of the variational principle: 

 ∫ 



 +=

Ω

TT d
2
1 ΩbuLuuΠ  (2) 

     By including the boundary conditions defined for the unknown function u: 

 0)( =uB  on Γ (3) 
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the variational principle (2) can be transformed in a natural one: 

 ( ) ( )∫∫ +=

ΓΩ

ΓuBuΩuAuΠ dd TT  (4) 

     The requirement for stationarity leads to: 

 ( ) ( ) 0dδdδδ TT =+= ∫∫
ΓΩ

ΓuBuΩuAuΠ  (5) 

     Eqn (5) has to be true for any variations uδ and implies the existence of a 
function u0 able to satisfy contemporary eqns (1) and (3). The solution of the 
problem leads to the minimum value of the natural variational principle: 

 ( ) ∫−=

Ω

ΩLuuuΠ d
2
1

0
T

00  (6) 

     In a series of problems of mathematical physics the magnitude of the 
functional (4) is proportional to the potential energy of the system. In such cases 
the search for a function which gives a minimum value to the variational 
functional (4) is equivalent to the principle of minimum potential energy. 

2 General topology optimisation problem layout 

The introduction of a continuous variable η depending on position to describe 
the effectiveness of the material in the domain Ω leads to the formulation of the 
topology optimisation problem: 

 

( )

( )ΩLη

ηηη

VΩη

uη,Π

Ω

uη

∞

∈

∈

∞<≤≤<

≤∫
maxmin0

dtosubject

minmaximise
V

 (7) 

where ηmax and ηmin are the upper and lower limits (side constraints) of the 
effectiveness variable,V is the volume of effective material in the optimal layout 
and u is the state function describing the physical problem. The optimisation 
problem described by eqn (7) is a min-max problem for a concave-convex 
functional ( )uη,Π . The functional and the constraint set satisfy conditions for the 
existence of a saddle point, thus proving the existence of solutions [4]. 
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     The introduction of eqn (6) in eqn (7) leads to the optimisation problem: 
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 (8) 

     The volume of the final structure V as well as the minimum value of the 
variational principle ( )0uη,Π depend linearly on the variable η. The existence of 
solutions has already been proved and a relaxation method or the introduction of 
materials with a micro structure is not required [4]. 
     The optimisation problem described by eqn (8) can be solved by using an 
optimality criteria approach [5]. The Lagrangian function of the optimisation 
problem described by eqn (8) is given by: 
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where λ is the Lagrange multiplier of the volume constraint and the side 
constraints concerning the design variable η have been temporarily neglected. 
The Kuhn-Tucker necessary conditions for optimality are: 
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     The Lagrange multiplier λ for the optimal solution can be evaluated as: 

 e
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 (11) 

where e is the average potential energy density in the design domain. Therefore, 
the optimal topology is characterised by a uniform distribution of the potential 
energy density as already shown by Venkayya [5] and Rossow and Taylor [6] in 
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the field of structural optimisation. If a linear static structural problem is 
considered, eqn (11) transforms in: 

 e
Ω

duDεuε

λ
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Ω
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∫
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d

)()(
2
1

 (12) 

 

where ε is the strain field depending on the displacement distribution u and D is 
the constitutive matrix for a linear elastic material. If a steady-state heat 
conduction problem is considered, eqn (11) transforms in: 
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 (13) 

 

where ϕ0 is the temperature field, ( )0
T φ∇  is the temperature gradient and k is 

the material conductivity. 
     Even if in the construction of the optimisation problem the function η does 
not make reference to the properties of the base material, for the continuum 
problem it can be linked to them by a simple relationship given by: 
 

 
0k

kη =  (14) 

 

if the heat conduction problem is considered, where k is a continuous 
conductivity distribution over the design domain and k0 is the base material 
conductivity, or by: 

 
0E

Eη =  (15) 

 

if a linear static structural problem is considered, where E is a continuous Young 
modulus distribution over the design domain and E0 is the base material Young 
modulus. The relationship between the function η and the base material 
properties introduced by eqn (14) and (15) transfers the role of design variable to 
the continuous distribution of the material property k or E, respectively. The 
volume of the final structure V  and the minimum value of the variational 
functional keep depending linearly on the design variables, the solution to the 
optimisation problem keeps existing [4] and no filter stabilisation or perimeter 
control method is required to reach the convergence. 
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     The optimality conditions described by eqns (12) and (13) have to be satisfied 
by updating the continuous function η trough a resizing procedure. If a discrete 
design domain is considered, the following resizing rules can be used: 

 
e
e

EE iold
i

new
i =  (16) 

 
e
e

kk iold
i

new
i =  (17) 

where new
iE , old

iE , new
ik , old

ik  and ei are the new and the old value of the Young 
modulus of element i, the new and the old value of the material conductivity of 
element i and the strain or ‘thermal’ energy density of element i, respectively. 
The application of the resizing rules described by eqns (16) and (17) corresponds 
to find the point wise optimal distribution of the material characteristics for a 
given fixed strain or temperature field, respectively. If the structure would have 
been determinate, the resizing rules above described would have led to the 
identification of the optimal configuration in one step. Otherwise, the resizing 
rules affect the global behaviour of the structure and an iterative process is 
required until convergence is reached.  
     Side constraints have not been taken into consideration in the definition of the 
Lagrangian function of the design optimisation problem. Their satisfaction has to 
be verified at each iteration and for each discrete element of the design domain 
during the updating process of the material properties. The requirement for a 
structure with the base material Young modulus E0 and material conductivity k0 
requires the proper selection of the upper limit for the artificial variable η: 

 1=maxη  (18) 

     The requirement for a positive definite stiffness matrix of the design domain 
leads to the selection of a lower limit for the artificial variable η given by: 

 54 1010 −− ÷=minη  (19) 

     The value of minη  is extremely low and allows to consider the elements with 
the corresponding value of Young modulus and material density as void. 
     The Lagrange multiplier of the volume constraint makes reference to the 
optimal structural configuration. It has not to be searched a posteriori in order to 
comply with the volume constraint. Instead, it can be calculated a priori in order 
to comply with the mean stress, displacement and stiffness constraints or the 
temperature gradient and heat flux constraints defined on the optimal solution. 
Therefore, the volume of the optimal solution usually unknown a priori is 
indirectly controlled by the imposition of a reference strain or ‘thermal’ energy 
density evaluated by taking into account the average strain or ‘thermal’ energy 
that should characterise the optimal solution. The imposed average strain or 
‘thermal’ energy density will be called in the following as reference energy 
density, refe and will be used instead of the average energy density e  in eqn (16) 
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and (17). For example, if the optimal solution would be characterised by a 
maximum allowable stress for the base material maxσ and a truss like structure is 
expected, the reference energy density can be evaluated as:  

 ( )
0

2

2
1

E
σ

σe max
maxref =  (20) 

     Otherwise, if the material has to be characterised by a prescribed heat flux 
( ) ( )maxφkφq 0

T
0 ∇= or temperature gradient ( )maxφ0

T∇ , the reference energy 
density can be evaluated as: 

 ( )( ) ( ) ( )maxmaxmaxref φkφφe 00
T

0
T

2
1

∇∇=∇  (21) 

     The procedure described to formulate a topology optimisation problem has 
already been implemented in the static structural field and has been applied by 
the author to solve benchmark [7] and real industrial structural problems [8]. 

3 Bracket design with thermal and structural requirements 

The proposed optimization methodology has been used to identify the optimal 
structural configuration of the Meteor & Debris Protection System (MDPS) 
panels of the International Space Station (ISS) module Columbus (figure 1).  
 

 

Figure 1: Design scheme of the ISS module Columbus. 

 
     The main structure of the module is shown in figure 1. It is characterised by a 
sheet metal cylindrical surface with longitudinal and circumferential T shape 
stiffening components. Several panels for meteor and debris protection purposes  
(figure 2) are linked to the stiffening elements by means of four brackets. The 
brackets have to be designed by taking into account several working conditions. 
The structural loads due to the launch accelerations in the Shuttle payload bay 
and the heat flow by conduction between the meteor and debris protection panel 
and the inside of the module have been taken into account in the present work. 
     The topology optimisation problem has been solved in two steps. In the first 
step a topology optimisation problem in the thermal field has been set up in order 
to identify the preferential way of heat flow by conduction between the external 
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panel and the inside of the module. In a following step, a topology optimisation 
problem in the structural field has been set up in order to identify the optimal 
material layout with maximum stress constraints. 
 

 constrained 
displacement Node 

ut ul ur 

A yes yes yes 
B no no yes 
C yes no yes 
D no no yes  

Figure 2: Geometry and boundary conditions of a MDPS panel. 

3.1 Thermal topology optimisation problem 

The first step of the bracket design process has been carried out by setting up a 
topology optimisation problem in the thermal field. The solution of the thermal 
optimisation problem allows to identify the optimal material layout in the design 
domain which maximise the heat flow by conduction between the external panel 
and the inside of the module with a prescribed temperature gradient. 
     The calculation of the temperature field and of the conductive heat flux 
between the external panel and the inside of the module has been carried out by 
taking into consideration a portion of the stiffening element the bracket is 
connected to. The discrete model (MDPS panel, design domain, stiffening 
element and external wall of the module) for the thermal topology optimisation 
problem and a detail of the design domain are shown in figure 3.  
 

1

  

Figure 3: Numerical model for the thermal topology optimisation problem with 
a detail of the design domain. 

 
     A temperature of +150°C has been imposed on the MDPS panel and a 
temperature of +25°C has been imposed on the internal surface of the main body 
of the module. A Ti6Al4V alloy with a k=7.6 W/mK thermal conductivity has 
been taken into account as base material for the bracket. The solution of the 
thermal optimisation problem has been carried out by taking into account only 
the material conductivity properties of the bracket and of the module stiffening 
elements. Radiation has been neglected due to the presence of radiation 

t
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insulating cover interposed between the MDPS panels and the main body of the 
module. 
 

 

Figure 4: Optimal solution of the thermal topology optimisation problem. 

 
     The optimisation problem has been solved by imposing several different 
temperature gradients and the fully connected optimal material layout 
characterised by the lowest uniformly distributed temperature gradient has been 
selected in order to define the design domain for the structural optimisation 
problem. The selected optimal solution is shown in figure 4 together with a 
portion of the circumferential module stiffening element. 

3.2 Structural topology optimisation problem 

The discrete model for structural topology optimisation is shown in figure 5. The 
design domain for the structural topology optimisation problem has been 
obtained by removing from the initial design domain shown in figure 3 the 
material volume identified by solving the thermal topology optimisation problem 
previously described. The displacement constraints of the protection panel are 
described in figure 2. The connection between the panel and the bracket is 
designed in order to avoid the presence of a stress field due to material thermal 
expansion. Symmetry constraints have been taken into account.  
     Several different loading conditions should be considered in order to take into 
account the correct and incorrect exploitation of the external protection panels. 
The bracket design problem has been set up by taking into account only the 
forces and moments due to the accelerations supported by the external panel 
during the launch phase (table 1). 

Table 1:  Force and moment peak values for bracket design. 

Fr [N] Fl [N] Ft [N] Ml [Nmm] Mt [Nmm] 
± 3831 ± 6000 ± 6000 ± 97066 ± 182700 

 
     Every combination of these loads defines a different independent loading 
condition to be analysed (25 different loading conditions). In order to reduce the 
computational time for the solution of the optimisation problem, only five 
independent loading conditions have been analysed characterised by the 
application of each load alone. 
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Figure 5: Design domain and symmetry constraints for the structural topology 
optimisation problem. 

  

Figure 6: Optimal solution of the structural topology optimisation problem. 

 
     The topology optimisation problem has been solved by imposing a constraint 
on the maximum allowable Von Mises stress evaluated as the Ti6Al4V yield 
strength Reh=800 MPa divided by a safety factor S=2. The final optimal material 
layout is shown in figure 6.  

3.3 Geometry extraction and design requirement verification 

The optimal material layout obtained by solving the thermal and the structural 
topology optimisation problems has been used to identify a possible geometry of 
the bracket (figure 7). 
 

 

Figure 7: A possible geometrical model of the bracket. 

 
     The geometrical model of the bracket has been discretised and analysed in 
order to verify the stress constraint imposed in the structural topology 
optimisation problem and in order to calculate the final global conductivity of 
the overall system (panel, bracket, stiffening element).  
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The mass of the proposed bracket geometry is m=0.63 kg. The constraint on the 
maximum Von Mises stress is verified with the exception of a few small areas 
where a stress concentration effect due to the geometry is present. The global 
conductivity of the system is CS=0.089 W/K. The Von Mises stress distribution 
in the worst loading condition and the heat flux are shown in figure 8. 
 

  

Figure 8: Von Mises stress distribution in the worst loading case and heat flow 
by conductivity in the proposed optimal geometry of the bracket. 

4 Conclusions 

The paper proposes a topology optimisation methodology based on optimality 
criteria to solve structural and thermal problems. It has been applied to search for 
an optimal design of a bracket with structural and thermal requirements showing 
the effectiveness of the proposed approach. 
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