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Abstract

In this paper we present COR a resource oriented computing model that address

the question of how to integrate user-level fine-grained multithreading, commu-
nication and coordination into a cluster of symmetrical multiprocessor comput-
ers. To support the design of complex distributed application using the proposed
paradigm we built pCoR a run-time system which has new areas that represents
extensions to the strict shared memory and message passing models supported
by other platforms: remote operations, dynamic domains, communication ports,
multithreading management, shared memory, replication and partition are some
of its distinguished features. In addition, it provides a thread-safe transport com-
munication layer to take advantage of modem high-performance commodity hard-
ware/software like Myrinet network.

1 Introduction

The emerging field of parallel computing illustrated by the increased importance
of clustering technologies [l] puts strong demands to the problem of organizing
computation, communication and coordination. On large-scale projects where the
communication patterns cannot be determined in advance the main problem is cor-
rectness, due to the non-determinism and concurrent access to resources. Another
issue that poses additional requirements to the task of parallel programming and
that can have a great impact upon performance is the need to establish a wised
relationship between problem specification and decomposition onto the hardware
of a parallel computer.

The rise of popular public domain software such as PVM[2] and MPI[3] had
a major influence on the wide use of parallel computers, ranging from high per-
formance supercomputer to clusters of workstations or home computers due to
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the normalized application development environments, Collections of worksta-
tions interconnected by a fast network, allow the farming of jobs over a unified
logical virtual parallel machine. Even when the network performance capability
is minimal, these tools provide an inexpensive testing vehicle for classes of prob-
lems where the ratio computation/communication is very high. Other options are
available as high speed networking technology developed for large scale parallel
machines migrates to more inexpensive systems and computers of more than one
processor that provide multiple simultaneous points of execution.

In what follows, we briefly present some of relevant techniques, and platforms

that can be used to identify and compare our approach to the problem of organi-
zation computation, communication and coordination to the task of parallel pro-
gramming, Next, we introduce the principle contributions of COR a new computing
model in the origin of this work, Finally, we present pCoR, a multithread resource
oriented library aimed to provide a common framework in which to exploit and
evaluate user level fine-grained computation and communication over clusters of
shared-memory multiprocessors.

2 Background

Parallel programming is a challenging and complex design space that enables pro-
grammers to deal with larger and more sophisticated problems. However, they can
no longer rely on the simple and stable programming model of Veumann cause

they have to face several new dimensions that usually do not appear in sequential
program development.

In areas where clustering are been primarily applied, to cope with the new
dimensions of complexity we need new models, tools and environments in order
to help programmers in their activity to make the hardware more usable and appli-

cation more performing. As a matter of fact, in many cases, high-performance is
difficult to achieve due to the lack of adequate software development methodolo-
gies and tools[4].

2.1 Communication and Multithreading

As parallel distributed computing evolved it has come to evidence that no mono-
lithic system can handle efficiently all the desired computation and communication
styles. The issue of threads has been widely discussed and implemented in slightly
different ways by various vendors and academics.

The use of threads to perform operations on behalf of the overall application is
extremely convenient for several reasons: 1) threads provide a natural implementa-
tion of a non blocking operation that maybe applied both to communication, shar-
ing and coordination between different threads of control; 2)threads are becoming
the dominant parallel programming model for symmetric multiprocessing shared
memory computers; 3)threads can improve performance by helping highly latency
systems to be more latency tolerant. Fortunately the POSIX standard also known
as Pthreads[5] seems likely to become the most used programming definitions for
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threads. The specification does not impose whether the treads are user or kernel
level; it is up to the threads implementation.

In MPI-2 threads were recognized as an important natural programming model
for symmetric multiprocessors [6] that separate a process into a single address
space and one or more threads of control being an effective way to hide latency in
high-latency operations.

Platforms like TPVM[7], LPVM[8], a modified version of P4[9], Chant[IO]
and Athapascan-O [11] allow the creation of multiple threads that interact using
global identifiers and send/receive primitives. The late adds the concept of ports
and requests so that any thread can receive a message sent to a particular port.
Panda[12], PM2[13] and Nexus[14] also include threads and remote execution
manage communication by executing handlers registered by the user, Nexus also
introduces the context as an important concept used to structure applications.

3 Overview of COR

COR (Resource oriented Computing) has been primarily motivated by the need to

support the design and evaluation of the MC2 (Cellular Computation Model)[l 5].
The model combines production systems with Petri Nets as a way to specify and
regulate the overall activity of a distributed system viewed as a multi-cellular
agent[16].

Another strong motivation is the need to provide adequate models and program-

ming tools to assist parallel programmers, with varying degrees of understanding
and skills, in the job of producing structured and performing software. A third
motivation is the exploiting of fine-grained user-level computation, communica-
tion and coordination in large scale application designed to run on clusters of
shared memory multiprocessors. The final motivation is to investigate and con-
struct a common frame-work in which to understand and evaluate architectural
and logical trade-offs of softwarehrdware interaction.

3.1 Resources

As a new computation model COR introduces the resource as a generic user meta-
phor that directly incorporates the notion of state, concurrency, locality and distri-

bution, It also supports composition and coordination between applications to deal
with the growing complexity of contemporary systems and applications.

The resources are the abstractions we use to simplify program development and
execution by freeing the user of the burden of explicitly managing the complex
relationships between the two phases typically involved on the development of
large distributed parallel application programs: structuring and computing.

Structuring is a series of separate stages ranging from problem analysis and
specification to the naming and design of the entities on the application. Comput-
ing is the continuous process of mapping the entities onto the hardware and exe-
cuting the instructions of the distributed multi-threaded control parallel program
to inquire, transform and commtmicate the state of the named entities.
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Tasks and domains are physical resources that dim the traditional boundaries be-

tween the physical hardware and logical software components. A task is the most
elemental unity of execution while domains delimit regions of addressable physi-
cal space where interaction between logical and physical resources occurs. Logical
resources includes: ports) a communication mechanisms used to route the informa-
tion between domains, data) a general class of resources used to contain structured
and unstructured pieces of information. Synchronizers, barriers, transitions and
topologies area other logical resources suited to the tasks of synchronization and
coordination of large scale multi-threadead applications.

A logical domain is a special case of logical resource derived from MC2 to
support the design of large, complex and modular applications. It is used to orga-
nize resources in a hierarchy tree of dependencies, rooted by the first domain in
the application, where nodes are structured resources (domains) and leaves simple

resources. Several existing systems use groups, the equivalent of logical domains,
for slightly different reasons[17, 3] allowing either for static or dynamic member-
ship allocation,

The aggregation of resources inside a domain maybe viewed as a first form of

composition equivalent to a program constituted by a bunch of modules. Higher
level of composition may be achieved through the association and integration
at runtime of several applications through a designated logical domain (see sec-
tion 3.2).

3.2 Identification

An application is viewed as a system of distributed domains where domains pro-
vide for the identification and representation of the resources they encompass.

The identification assigned to every resource is obtained from the meta-domain,

a special logical domain that acts as a central maintainer and generator of identi-
fiers belonging to the same application. It is a universal identifier that comprehends
a macro-identification and a micro-identification; the late being used to uniquely
identify the resource in the application (its principal identification idp), whereas

the first encodes an index used to join and integrate on-the-fly plug gable resources,
belonging to different applications.

Resources are directly represented at the domain level. They maybe constituted

by one or more built-in objects related with computer resources like containers,
memory, port or operon (made of one or more executors), and body, like synchro-

nizer, mail-box, organizer or data (see figure 1).

3.3 Exchange of identity

With the exception of domains and tasks all other resources are considered passive

agents. Domain autonomy is related with the management and representation of
the computer resources used to support the entities of an application. Tasks are
autonomous agents whose activity results of the actions performed by an executor
– a thread of control that executes a function – viewed at the implementation level
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Figure 1: Resource anatomy.

as a computer resource.
All resource management and state transformation operations are performed in

the context of a user executor or a proxy executor delegated by the run-time sys-
tem. Executors are allowed to pursuit their action after assuming (or borrowing) the
principal identification of a target resource. Executors may be dynamically allo-

cated or de-allocated at run-time, or statically assigned to a newly created resource
as it happens every time a simple task is created.

Whenever an executor needs to operate a resource, distinguished from the one it
gets the current principal identification, it executes an exchangeOj7dentity primi-
tive that when successful gets the idp of the target resource. To return to the original
identity the executor must evocate a returnOj7dentity primitive.

3.4 Replicas and partitions

Naming is the most elemental mechanism that can be used to identify each indi-
vidual resource, thus promoting spatial concurrency. Another mechanism based
on alias is used to increase the concurrency at the identification level that fails to
produce real concurrency. In this case we are sharing the body of a solely resource
using different identifications.

However, in a system of distributed domains the need for efficiency may deter-
mine the existence of multiple replica of the same body; as it happens when the

alias operation spawn multiple domains. In this situation the system may auto-
matically manages both local and remote representations of the solely resource,
ensuring the consistency of replicas, according to a default or elected policy.

As an alternative to replication, a complex resource (the equivalent of a structure
in C) may be partitioned in such a way that each partition may be recognized as
an individual resource on itself, also represented by a principal identification and a
body. This powerful mechanism has the potential to increase the concurrency and
reduce the communication overhead by maintaining the consistency of one sole
representation of the distributed shared body.

To manage all forms of user and system identification the micro-identification
(see section 3.2) may be seen as comprehending several distinct fields that may
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be used to distinguish between the different idps of the same resource, irrespec-
tively of the representation scheme used to address a resource – alias, replicas or
partitions.

As an example consider the use of a task whose mailbox is partitioned between
multiple alias as an alternative to a task that shares a simple mail-box between its
alias (see figure 2). The advantages of the first approach are evident when it is nec-
essary to identify the real destination of a message. In case of data decomposition
over a system of distributed domains the first approach also favors concurrency
and has the potential for better efficiency when dealing with large volumes of data.

Figure 2: Task alias.

3.5 Asynchronous operation model

COR offers programmers the choice between synchronous or asynchronous mod-
els of operation for most of the calls it supports. If the initiator of a call selects
the synchronous model it always suspends waiting the operation to terminate to
resume execution. This mode of operation using blocking calls are best suitable
to guarantee the determinism of a multithreaded parallel program, When selecting
the asynchronous model the operation immediately returns a handler to the ini-
tiator that may later be used to inquire the status of the requested operation or to
revert to synchronous model of operation.
Asynchronous operation model provides the means to enhance the concurrency
within each domain to increase system responsiveness and efficiency and in some
situations to avoid deadlocks, In a system of distributed domains, most non-local
operation are natural candidates to immediate calls due to the considerable over-
head introduced by the transport communication layers between domains.

3.6 Message passing contexts

COR communication model assumes that any resource, not only tasks, may send
a message to any other resource with the guaranty that messages sent in the same
path are received in the order they are sent, without loss. Messages are labeled with
a user-level supplied tag and a system-level tag along with the identification of the
sender, The user-tag allows discriminating between multiple messages sent to the
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same destination. The system-task may be used for library writer and user alike in
a way which is broadly equivalent to the use of a communicator in MPI[3].

COR uses the idps of domains (as they are unique and generated by the system
at-runtime) as system-tags. This way messages are addressed or received through
a domain context does allowing for the creation of private communication spaces
where messages may not be sentlreceived outside the designated domain.

3.7 Ports

The aim of management in the world of clusters is the utilization of computers
resources at the highest possible degree. In respect to communication sub-systems
COR assumes that at each cluster node communication adapters may be divided
by the runtime library into a certain number of disjoint communication end-points
called ports. Each port is a communication path to other hardware compatible ports
used to communicate with remote domains.
At run-time, inside each domain, fully abstracting from the specific communica-
tion medium and protocols, several soft-ports can be open to share or exclusively
use the underlying communication adapters, and then closed to release the ports.
In figure 3 we show several domains each one having two soft ports sharing the

available ports in the respective node.

~ camaln ARemutca O Pmi

Figure 3: Transport layers in a system of distributed domains,

4 pCoR

pCoR is intended as a general purpose run-time system built to support and eval-
uate the proposed resource oriented computing paradigm. It is based on a former
effort to combine multithreading, message passing and shared memory [18]. Cur-
rently is been used under SIRe (Scalable Information Retrieval Environment) a
research project partially supported by contract POSI/CHS/4 1739/2001, FCT/MCT
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Portugal, and in classes by students of University of Minho and Polytechnics Insti-

tute of Braganga.
The overall design enhances portability and extensibility by providing a pro-

grammatic interface to static and dynamic linker which can be used to bind and
unbind on-the-fly system shared libraries or user dynamic executable. By comb-
ing ELF Dynamic Linking with POSIX threads, GNU compiler and linker we
ensure the portability of the code and easy support for a wide range of heteroge-
neous environments and operating systems.

4.1 Design issues

A pCoR application is a system of distributed domains translated into user pro-
grams and scheduled as processes at the cluster nodes, pCoR resources are func-
tional implementations of COR concepts, slightly deviated from the original, that
are created in the computing space delimited by physical domains.

Domains are containers that organize or structure other resources and provide
for safe contexts and the execution on-the-fly of pluggable modules, Tasks are

user functions scheduled as autonomous threads of control that exploit dynamic
libraries to allow the binding of local functions by name at runtime, Data are

regions of contiguous memory viewed by programmers as distributed shared mem-
ory (object-oriented) protected by the traditional acquire and release operations of
the release consistency model,

Other resources were added to the runtime: ports, as transport definitions, barri-

ers for synchronization purpose and mutexes for defining mutual exclusion regions
of shared code.

4.2 System architecture

The core of domains consists of several independent subsystems implemented as
an hierarchy of layers from the low-level interface of system dependent services –
POSIX threads, dynamic libs and communication – to the higher level interfaces
of system and application APIs (see figure 4.2).

Taking advantage of the shared address space inside each domain most of the
local operations and services are executed directly by pCoR library, reducing the

cost of scheduling system threads.
Each domain includes a controller, a thread responsible for the interconnection of
the application domains, and one or more mailers which are responsible for mov-
ing messages from the transports communication layers to the internal messag-
ing system. Other system threads may be spawned in response to external service

requests or events,

4.3 Shortcuts and replication

All the resources including tasks have a principal identification that makes them
visible outside the ascendant domain (usually a process), along with a local name
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Figure 4: The core domain layers.

and membership index. In addition any resource can become a member of another
ascendant (a domain) under a different name or alias – a proper new membership
index and name plus and anew principal identification. However original resources
and their alias share the same body.

Any time a pCoR primitive references a remote resource the run-time provide
for the automatically creation of a local resource replica ensuring the consistency
of all the scattered replicas according to a release consistency multiple reader-
single writer protocol. Within a domain the life time of every local replica is a sys-
tem dependent variable. However the programmer may influence system behavior
by asking for a local identifier of a resource a shortcut – which has the effect
of create a consistent local replica of the target resource which is made perma-
nent until being explicitly discharged. Shortcut may not be used outside the local
domain.

4.3.1 Resource tree
pCoR promote a unified approach to the task of distributed parallel program-
ming by representing computing nodes and target architectures through the same
metaphor that is used for the entities on the application, In addition, the same set
of primitives may be used to manipulate resources in the application model and
in the computer nodes. For example, the addition/deletion of a node of a parallel
distributed computer is equivalent to the creation/destruction of a resource.

Along with the representation of nodes, architectures and the virtual machine by
using logical domain, several other proxy resources can be created to registry infor-
mation about each node of the cluster like the amount of memory or the number of
processors. This kind of information may be of relevant interest to programmers
as it may be used as an input, for example, to select the nodes where to spawn new
physical domains.

Every pCoR running application draws a dynamic resource dependency tree that
may be used to determine or trace the established relation-ship between all the liv-
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Figure 5: The hierarchy tree of dependencies,

ing resources, By following an absolute path initiated on ROOT or a relative path
initiated at any domain in the tree it is also possible to identify resources by index

or name.
In figure 5 the root of the tree represented by the constant ROOT is the ascendant

of both the METADOMAIN, that contains all domains in the application, and the
VIRTUALMACHINE used as a sub-tree of logical resources that represent cluster
resources. A logical domain named WORLD is always created in the first applica-
tion domain, to ease the creation and access to global application variables.

5 Evaluation

In this section we present results of some preliminary studies that should be viewed
as suggestive of pCoR performance behavior and are no way conclusive. The
experiments that we describe were designed to evaluate the run-time system and
determine the potential gain of using shared memory, local message passing and
remote message passing. The experiments were realized using two dual Pentium
III workstations (733MHz) running Linux RedHat connected by Myrinet and Fast
Ethemt networks.

The first experiment accounts for the time spent to synchronize two tasks that
accesses a shared variable, by using mutexes and condition variables. Next, we
measure the time spent to synchronize and to send data between two tasks in the
same domain. Finally we evaluate the performance of task to task communica-
tion between two nodes of the cluster using both UDP/Ethemet and GNVMyrinet
transport communication layers.

The picture (see figure 6) shows that 1) the time to perform a synchronized

memory transfer between two tasks in the same domain is above 25ps, indepen-
dently of the message size; 2) the time to post and get a message from the internal
mailer message structure of an exchange of data (round trip) between two tasks in
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the same domain, takes about 30ps , The overhead raises significantly when data

content is added (1 byte - 47#s, 32 bytes - 50ps, lkbyte - 96ps); 3) the time to
exchange data between two tasks in different nodes, over UDP/Ethemet is about
221ps for a Obyte message, 267ps for a 32 byte message and 1201ps for a lkbyte
message; 4) the time to exchange data between two tasks in different nodes, over
GM/Myrinet is 72 ps for small messages and 107 ps for lkbyte messages.

I , , / I

18””’===== =--= ===01
10 J I

0 1 2 4 8 18 32 64 128 258 512 10242048 40S%

Message Size (bytes)

Figure 6: Performance evaluation.

6 Conclusion

We have proposed a resource oriented computing model aimed to help program-
mers in the task of develop large and complex parallel distributed application to
run in clusters of symmetrical multiprocessors, The prototype run-time provides an
integrated address space based on domains that integrates distributed multithread-
ing and synchronization. It incorporates an autonomous sub-system[ 19] that allow
resources to interact through a thread-safe communication library which supports

the message passing style and allows for safe contexts communication. In addition,
it takes advantage of existing commodity hardware/software high-performance
networks like Myrinet while maintaining compatibility with UDP/TCP over Eth-
ernet. In future work we plan to extend the basic pCoR design to incorporate the
full functionality of the proposed paradigm. More significant performance can be
achieved by reducing the cost of thread creation and scheduling introduced by cur-
rent implementations of POSIX threads on multiprocessor. We also plan to extend
the underlying communication sub-system with the goal to support Gigabit Ether-
net using VIA.
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