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Abstract

A thee-dimensional numerical simulation of convective flow in porous media
using an algorithm based on a combination of a single domain and a subdomain
boundary element method (BEM) is presented. The fluid flow in porous media is
modeled with the modified Navier-Stokes equations (Brinkman-extended Darcy
formulation with inertial term included) coupled with the energy and species
equations using the Boussinesq approximation. The velocity-vorticity formulation
is adopted to solve the governing set of equations, which results in decoupling
of the computational scheme into the kinematic and kinetic computational parts.
The boundary vorticity values are calculated by a single domain BEM solution of
the kinematics equation, while the subdomain BEM is used to solve the vorticity,
energy and species transport equations. Computations are performed for various
governing parameters (Rayleigh number, Darcy number, Lewis number, buoyancy
coefficient) and, simulation results are compared to the results of some published
studies. Heat and mass flux through the cavity and flow fields are analyzed,
focusing on the 3D nature of the phenomena.
Keywords: boundary element method, porous medium, three-dimensional natural
convection, Brinkman-extended Darcy formulation.

1 Introduction

Problems of convective flow in saturated porous media can be found in a wide
variety of engineering and natural applications, e.g. building thermal insulation,
extraction of geothermal energy, heat exchangers, contaminant transport through
water saturated soil. Most of the published studies, which are dealing with
buoyancy induced flows in porous enclosures, are limited on the cases of two
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dimensional geometries where the fluid flow in porous media is modeled with
the general linear law of permeability (Darcy law). Later, the fluid flow model was
extended with the Forchheimer term which represents additional non-linear inertia
term due to increasing velocity. The most commonly used extension of Darcy law
is with the addition of the terms covering the influence of inertia effects analogous
to the Navier-Stokes equations and Brinkman viscous term, which enables to
satisfy the no-slip boundary condition on impermeable surfaces that bound the
porous media. The so called Brinkman model is also used in the present study.

Studies of buoyancy induced flows in three-dimensional porous configurations
are rare and primary confined to conditions of heating from below e.g. [1–3],
only few can be found considering 3D enclosure heated from the side e.g. [4–
6]. Furthermore, some 3D results of double diffusive natural convection, with
combined actions of thermal and solutal buoyancy forces in porous enclosures
can be found in [7] and [8].

Numerous numerical methods have been proposed to simulate the natural
convection phenomena in porous media. In the present study, the velocity-vorticity
formulation is employed to the macroscopic Navier-Stokes equations, written for
the porous media, which are coupled with the energy and species equations. The
unknown field functions are velocity, vorticity, temperature and concentration. The
Boundary Element Method (BEM) is employed to find the solution. The proposed
algorithm is based on the pure fluid [9] and nanofluid [10] simulation codes. The
boundary vorticity values are calculated using the single domain BEM, while all
other flow fields are solved by subdomain BEM. The vorticity, energy and species
transport equations are solved using a domain decomposition approach [11].

2 Mathematical formulation

2.1 Geometry of the problem

The geometry under consideration is a cube enclosure, shown in Fig. 1, filled
with porous media, which is fully saturated with incompressible fluid. Left and
right vertical walls are imposed to different temperature and concentration values,
where T1 > T2 and C1 > C2, while the remaining boundaries are adiabatic and
impermeable.

Due to subjected temperature and concentration differences on two vertical
walls, the natural convection phenomena in the enclosure will occur. The density of
the heated fluid next to the hot wall decreases and buoyancy will carry it upwards.
On the other hand, fluid along the cold wall will be colder and denser and it will
travel downwards. Due to applied concentration differences on the walls additional
concentration buoyancy forces are induced, which cause additional movement of
the fluid. Both induced buoyancy forces can aid or oppose each other, which also
influences the strength of the convective motion of the fluid. The cases when
solute is transported due to induced temperature gradient (Soret effect) or heat
is transferred due to concentration gradient (Dufour effect) are neglected in the
present study.
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Figure 1: Geometry with boundary conditions for convection with horizontal
temperature and vertical solutal gradient.

2.2 Governing equations

The governing equations for the problem of double-diffusive natural convection
in porous media are given in terms of conservation laws for mass, momentum,
energy and species. They are obtained from classical Navier-Stokes equations for
the pure fluid flow which are generally written at the microscopic level. By volume
averaging over suitable representative elementary volume (REV) and considering
the fact that only a part of this volume, expressed with the porosity ϕ, is available
for fluid flow, macroscopic or volume averaged Navier-Stokes equations can be
derived. The averaging procedure is given in detail in [12].

The REV has to be determined in a way that, irrespective of its position
in porous media, it always contain both solid and fluid phases. In the model
development following assumptions are adopted: the fluid flow is steady and
laminar, the solid phase is homogeneous, isotropic and non-deformable, the fluid
is incompressible Newtonian and in thermal equilibrium with the solid phase. The
porosity and permeability of porous medium are constant while the density of the
fluid depends only on temperature and concentration variations and is described
with the Oberbeck Boussinesq approximation as:

ρ = ρ0(1− βT (T − T0)− βC(C − C0)). (1)

In above expression ρ is density of the fluid, βT is the volumetric thermal
expansion coefficient, T is temperature, βC is the volumetric expansion coefficient
due to chemical species and C is concentration. The subscript 0 refers to a
reference state.

Further assumption is that no internal energy sources are present in the fluid
saturated porous media. The irreversible viscous dissipation is also neglected,
while no high velocity flow of highly viscous fluid is considered in the present
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study. The solid phase of porous medium is assumed to be in thermal equilibrium
with the saturating fluid.

The macroscopic conservation equations can now be written as:
• continuity equation

∇⃗ · v⃗ = 0, (2)

• momentum equation

1

ϕ

∂v⃗

∂t
+

1

ϕ2
(v⃗·∇⃗)v⃗ = −(βT (T−T0)+βC(C−C0))g⃗−

1

ρ
∇⃗p+1

ϕ
ν∇2v⃗− ν

K
v⃗, (3)

• energy equation

σ
∂T

∂t
+ (v⃗ · ∇⃗)T = λe/cf∇2T, (4)

• species equation

ϕ
∂C

∂t
+ (v⃗ · ∇⃗)C = D∇2C. (5)

The parameters used above are: v⃗ volume averaged velocity, ϕ porosity, t time,
ρ density, ν kinematic viscosity, p pressure, g⃗ gravity vector, K permeability. In
the energy equation σ represents the heat capacity ratio σ = (ϕ cf+(1−ϕ)cs)/cf ,
where cf = (ρcp)f and cs = (ρcp)s are heat capacities for fluid and solid phases
respectively. λe is the effective thermal conductivity of the fluid saturated porous
media given as λe = ϕλf +(1−ϕ)λs, where λf and λs are thermal conductivities
for fluid and solid phases respectively. In the species equation C is concentration,
and D mass diffusivity.

The momentum equation (3) is also known as the Darcy-Brinkman equation,
with two viscous terms e.g. Brinkman viscous term (third on the r.h.s) and Darcy
viscous term (fourth on the r.h.s.). The Brinkman viscous term is analogous to
the Laplacian term in the classical Navier-Stokes equations for pure fluid flow. It
expresses the viscous resistance or viscous drag force exerted by the solid phase
on the flowing fluid at their contact surfaces. With the Brinkam term the non-slip
boundary condition on a surface which bounds porous media is satisfied [13].

2.3 Velocity-vorticity formulation

The velocity-vorticity formulation of above given modified Navier-Stokes
equations is derived by taking the curl of the mass conservation law (2) and of
the Brinkman momentum equation (3). The vorticity is defined as the curl of the
velocity field ω⃗ = ∇⃗ × v⃗ and is solenoidal by the definition, ∇⃗ · ω⃗ = 0. As a
consequence of the transformation, the computational scheme is partitioned into its
kinematic and kinetic parts [14]. The kinematics is given with the elliptic velocity
vector equation:

∇2v⃗ + ∇⃗ × ω⃗ = 0, (6)
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furthermore, the kinetic part is governed by the vorticity transport equation:

ϕ
∂ω⃗

∂t
+ (v⃗ · ∇⃗)ω⃗ = (ω⃗ · ∇⃗)v⃗ − ϕ2∇⃗ × (βT (T − T0) + βC(C − C0))g⃗+

+ νϕ∇2ω⃗ − νϕ2

K
ω⃗.

(7)

2.4 Non-dimensional equations

Before all equations will be rewritten in the non-dimensional form, in the vorticity,
energy and species equations the modified vorticity, temperature and concentration
time steps are introduced as tω = t/ϕ, tT = t/σ and tC = t/ϕ. These are
necessary mathematical steps allowing to use the numerical scheme presented in
following chapter.

Non-dimensional form of the governing equations is adopted, using following
dimensionless variables:

v⃗ → v⃗

v0
, r⃗ → r⃗

L
, ω⃗ → ω⃗L

v0
, t→ v0t

L
, tω → v0tω

L
, tT → v0tT

L
,

tC → v0tC
L

, T → T − T0
∆T

, C → C − C0

∆C
, g⃗ → g⃗

g0
,

(8)

where v0 is characteristic velocity, r⃗ position vector and L characteristic length.
Furthermore, T0 and C0 are characteristic temperature and concentration, ∆T
and ∆C are characteristic temperature and concentration differences and g0 =
9, 81 m/s2 gravity acceleration. Characteristic velocity is given with the
expression v0 = λf/(cfL), where λf is thermal conductivity of the fluid. This
definition is common when considering buoyant flow simulations.

The macroscopic non-dimensional vorticity equation can now be written as:

∂ω⃗

∂tω
+ (v⃗ · ∇⃗)ω⃗ = (ω⃗ · ∇⃗)v⃗ − PrRaTϕ

2∇⃗ × (T +N C)g⃗+

+ Prϕ∇2ω⃗ − Pr

Da
ϕ2ω⃗,

(9)

with non-dimensional governing parameters defined as:
• Pr, Prandtl number:

Pr =
ν

α
, (10)

where ν is kinematic viscosity and α thermal diffusivity given as α =
λf/cf .

• RaT , thermal fluid Rayleigh number:

RaT =
gβT∆TL

3

να
, (11)
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• RaP , porous Rayleigh number:

RaP = RaT Da =
gβT∆TLK

να
, (12)

where
• Da is a Darcy number:

Da =
K

L2
, (13)

and K is permeability of porous media,
• N , buoyancy coefficient:

N =
RaS
RaT

, (14)

where
• RaS is solutal Rayleigh number:

RaS =
gβC∆CL

3

να
. (15)

The energy conservation equation in the non-dimensional form can be written
as:

∂T

∂tT
+ (v⃗ · ∇⃗)T =

λe
λf

∇2T, (16)

and finally the species conservation equation in non-dimensional form reads:

∂C

∂tC
+ (∇⃗ · v⃗) = Le∇2C, (17)

where Le is Lewis number, given with expression:

Le =
α

D
. (18)

3 Numerical method

Considering a domain Ω with a boundary Γ a fundamental solution of the Laplace
equation and the Gauss and Greens theorems are used to write the integral
kinematics equation without derivatives of the velocity or vorticity fields [15]:

c(ξ)v⃗(ξ) +

∫
Γ

v⃗(n⃗ · ∇⃗)u⋆dΓ =

∫
Γ

v⃗ × (n⃗× ∇⃗)u⋆dΓ +

∫
Ω

(ω⃗ × ∇⃗u⋆)dΩ. (19)

Here ξ⃗ is the source or collocation point, n⃗ is a vector normal to the boundary,
pointing out of the domain and u⋆ is the fundamental solution: u⋆ = 1/4π|ξ⃗ − r⃗|.
In order to have a nonsingular system of equations for solving for boundary values
of vorticity, a tangential form of equation (19) is used. It is obtained by a cross
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product with a unit normal, yielding:

c(ξ⃗)n⃗(ξ⃗)× v⃗(ξ⃗) + n⃗(ξ⃗)×
∫
Γ

v⃗∇⃗u⋆ · n⃗dΓ

=n⃗(ξ⃗)×
∫
Γ

v⃗ × (n⃗× ∇⃗)u⋆dΓ + n⃗(ξ⃗)×
∫
Ω

(ω⃗ × ∇⃗u⋆)dΩ.
(20)

The same fundamental solution and a standard BEM derivation [16] is used to
write the integral forms of the vorticity transport equation (9), the energy equation
(16) and species equation (17):

c(ξ⃗)ωj(ξ⃗) +

∫
Γ

ωj∇⃗u∗ · n⃗dΓ =

∫
Γ

u∗qjdΓ+

+
1

Pr

1

ϕ

(∫
Γ

n⃗ · {u∗(v⃗ωj − ω⃗vj)}dΓ−
∫
Ω

(v⃗ωj − ω⃗vj) · ∇⃗u∗dΩ
)
−

−Rafϕ
∫
Γ

(u∗T g⃗ × n⃗)jdΓ−Rafϕ

∫
Ω

((T +N · C)∇⃗ × u∗g⃗)jdΩ+

+
1

Da
ϕ

∫
Ω

ωju
∗dΩ,

(21)

c(ξ⃗)T (ξ⃗)+

∫
Γ

T ∇⃗u∗ · n⃗dΓ =

∫
Γ

u∗qT dΓ+

+
λf
λe

(∫
Γ

n⃗ · {u∗(v⃗T )}dΓ−
∫
Ω

(v⃗T ) · ∇⃗u∗dΩ
)
.

(22)

c(ξ⃗)C(ξ⃗)+

∫
Γ

C∇⃗u∗ · n⃗dΓ =

∫
Γ

u∗qCdΓ+

+D

(∫
Γ

n⃗ · {u∗(v⃗C)}dΓ−
∫
Ω

(v⃗C) · ∇⃗u∗dΩ
)
.

(23)

Here, ωj is a vorticity component, qj is a component of vorticity flux, qT is the
heat flux and qC is the species flux. In the present study only steady flow fields
will be considered, thus the time derivative terms ∂ω/∂tω, ∂T/∂tT and ∂C/∂tC
are omitted. A combination of subdomain BEM and single domain BEM for the
solution of the governing equations will be applied. The Dirichlet and/or Neumann
boundary conditions for velocity, temperature and concentration are given. They
are used to obtain solutions of the kinematics equation (19) for domain velocity
values, energy equation (22) for domain temperature values and species equation
(23) for domain concentration values. The boundary conditions for vorticity, which
are needed to solve the vorticity transport equation (21), are unknown. The single
domain BEM on the tangential form of the integral kinematics equation (20) will
be used to obtain the unknown boundary vorticity values.

In the subdomain BEM method, which is used to solve equations (19), (21) and
(22) a mesh of the entire domain Ω is made, each mesh element is named as a
subdomain. Equations are written for all source points on each of the subdomains.
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In order to obtain a discrete version of integral equations shape functions are
used to interpolate field functions and flux across the boundary and inside of the
subdomain. In this work hexahedral subdomains with 27 nodes are used, which
enable continuous quadratic interpolation of field functions. The boundary of each
hexahedron consists of 6 boundary elements. On each boundary element the flux
is interpolated using discontinuous linear interpolation scheme with 4 nodes. By
using discontinuous interpolation, flux definition problems in corners and edges
could be avoided. Between subdomains the functions and their fluxes are assumed
to be continuous. The resulting linear systems of equations are over-determined
and sparse. They are solved in a least-squares manner. Discretization procedure for
the single domain BEM, which is used to solve equation (20), is analogous, with
a distinction that source points are set into all nodes on the boundary of the entire
domain. The resulting linear system of equations is full. It is solved by the LU
decomposition method. This algorithm has been proposed for 3D fluid flow and
heat transfer by Ravnik et al. [9]. In present work, the algorithm for simulations in
porous media was expanded. The kinematics equation requires no changes, while
porous parameters had to be introduced in vorticity transport and energy equations.
The Darcy term in the vorticity transport equation, which is not present in the pure
fluid case, is linearly proportional to the unknown vorticity, thus it was included
into the system matrix.

4 Results and discussion

Natural convection phenomena in fluid saturated porous medium is expected to
depend on a number of parameters such as porosity, thermal conductivity and heat
capacity of fluid and solid phases, viscosity of the fluid phase etc.. The wall heat
and species fluxes are calculated for different values of porous Rayleigh number
(RaP = 50, 100, 200, 500 and 1000), Darcy numbers (10−6 ≤ Da ≤ 10−1),
Lewis number Le = 10 and buoyancy coefficient N = 1, which can be expressed
in terms of average Nusselt and Sherwood numbers given as:

Nu =

∫
Γ

∇⃗T · n⃗dΓ, Sh =

∫
Γ

∇⃗C · n⃗dΓ. (24)

Γ is the surface through which the heat and species fluxes are calculated and n⃗ is
the unit normal to this surface.

The calculations were performed on a nonuniform mesh with 20 × 8 × 20
subdomains and 28577 nodes. Subdomains are concentrated towards the hot and
the cold walls. The convergence criteria for all field functions was 10−5, under-
relaxation of vorticity, temperature and concentration values ranging from 0.1 to
0.01 was used.

Table 1 presents Nusselt number values for the cubic enclosure for Pr = 0.71,
ϕ = 0.8, RaP = 1000 and different values of Da. The results are compared to
the study of authors R. V. Sharma and R. P. Sharma [5], where the 3D natural
convection in a porous box is considered, and the fluid flow is modeled with
use of the Darcy-Brinkman-Forchheimer model. Very good agreement between
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Table 1: Nusselt number values for the 3D natural convection in a cube for
RaP = 1000, ϕ = 0.8 and different values of Darcy number. The results
are compared to study of Sharma and Sharma [5].

RaP /Da 10−1 10−2 10−3 10−4 10−5 10−6

1000 present 1.855 3.770 6.922 10.558 13.242 14.568

[5] − 3.99 6.95 10.14 12.78 13.72

the results can be observed for the case of high Darcy number values (Da =
10−4 − 10−2). Slight differences occur in a case of very low Darcy numbers
(Da = 10−5 and 10−6). In this case the effect of Forchheimer term, which is
not included in the model of the present study, becomes significant and influences
the overall heat transfer resulting in lower values of Nusselt numbers [5].

In addition, Nusselt number values for natural convection for Pr = 0.71,
ϕ = 0.8, RaP = 50, 100, 200, 500 and 1000 and 10−6 ≤ Da ≤ 10−1 are
presented graphically in Fig. 2.

It can be observed, that the Nusselt number is increasing with decrease of
Da and increase of RaP . The influence of Darcy number is more pronounced

Figure 2: Dependence of the Nusselt number on the Darcy number for different
values of porous Rayleigh number.
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Table 2: Nusselt and Sherwood number values for the 3D natural convection in a
cube for RaP = 100, Le = 0, N = 0 and Le = 10,N = 1, ϕ = 0.8 and
different values of Darcy number.

RaP /Da 10−1 10−2 10−3 10−4 10−5 10−6

Le = 0, N = 0 Nu 1.039 1.533 2.331 2.957 3.295 3.431

Le = 10, N = 1 Nu 1.086 1.687 2.529 3.164 3.595 3.788

Sh 2.842 5.624 9.749 14.714 19.107 20.869

at higher values of porous Rayleigh number. At low values of RaP the Nusselt
number values are near to 1, the dominant heat transfer mechanism in this case is
conduction. This changes with increasing the RaP and decreasing of Da, when
convection becomes dominant while conduction is negligible. When values of Da
are high, the Brinkman viscous term in the momentum equation plays a significant
role and reduces the overall heat transfer, which results in smaller values of Nu.
With decrease of Da, the influence of Brinkman viscous term becomes almost
negligible (Da < 10−4). In that case viscous effects become smaller and the
inertial effect becomes significant due to high fluid velocity. For low values od
Darcy number the model gives similar results as the classical Darcy model [17].

The presented results were obtained for the cases, where the thermal buoyancy
force is the only acting force (Le = 0 and N = 0). In addition, some results for
double-diffusive natural convection, where Le = 10 and N = 1 are presented
in table 2. In this case thermal and solutal buoyancy forces are aiding each other,
which results in higher heat transfer and additional solute transfer through porous
enclosure as can be observed from the values of Nusselt and Sherwood numbers
in table 2.

In Fig. 3 the iso-surfaces for absolute value of y velocity component are plotted.
From the flow structure in the enclosure (velocity vectors) it can be examined, that
the flow field is not far from being 2D. This is due to the fact that the flow field is
driven by a temperature and concentration differences between two opposite walls,
which causes large two-dimensional vortex in the y plane. The 3D nature of the
phenomena can be observed in the corners of the domain, as shown in Fig. 3. The
extent of movement perpendicular to the plane of the main vortex is small, but it
becomes more apparent in case of higher Rap and lower values of Da, in general.

5 Conclusions

Three-dimensional convective flow in a cube enclosure filled with saturated
porous media was examined numerically using the boundary element method.
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Figure 3: Iso-surfaces for RaP = 500, Da = 10−3 and absolute value of
velocity component |vy| = 3 (left) and RaP = 1000, Da = 10−3,
|vy| = 7 (right). Contours of temperature are displayed on the iso-
surfaces (−0.5 < T < −0.5). In addition, the velocity vectors on the
plane y = 0.5 are displayed.

The numerical algorithm is based on the combination of single domain and
subdomain boundary element method, which are used to solve the velocity-
vorticity formulation of macroscopic Navier-Stokes equations. Some results of
overall heat and solute transfer through enclosure are given in terms of Nusselt
and Sherwood number values. It may be observed, that the flow regime as well
as heat and solute transfer strongly depend on the values of the governing non-
dimensional parameters, e.g. Rayleigh, Darcy and Lewis number. 3D nature of the
flow field is observed in the corners of the enclosure, although the fluid is moving
predominantly in a single two-dimensional vortex.
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