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Abstract

This paper deals with an important area of real life problems. It is concerned
with the application of the fast Fourier transform to estimate wave energy spectral
density in a random sea state. Graphical illustrations are manifested in a clear and
distinct manner. The fast Fourier transform is a mathematical procedure which can
be thought of as transforming a function from the time domain to the frequency
domain. The application of a Fourier transform is analogous to the splitting up
of a light beam by a prism to form the optical spectrum of the light source. An
optical spectrum consists of lines or beams of colors corresponding to the various
wavelengths and hence different frequencies of light wave emitted by the source.
The spectrum of a signal in digital signal processing refers to the way energy in
the signal is distributed over its various frequency components.
Keywords: Discrete Fourier transforms, fast Fourier transforms, spectrum,
frequency, wavelength, energy density, random sea state.

1 Introduction

This paper brings some ideas and concepts in the way the Fourier transform plays
a vital role in our daily life. We investigate here from theoretical and mathematical
view points an important topic called the fast Fourier transform (FFT). The fast
Fourier transform is a mathematical algorithm which is an extremely important and
widely used method that is used to extract information from sampled signals. In
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this twenty first century, electronics dominate our life style tremendously. We can
say that the Fourier transform is a mathematical procedure which can be thought
of as transforming a function from the time domain to the frequency domain. The
application of the Fourier transform to a signal is analogous to the splitting up
of a light beam by a prism to form the optical spectrum of the light source. An
optical spectrum consists of lines or bands of color corresponding to the various
wavelengths and hence different frequencies of light wave emitted by the source.
The spectrum of a signal in a digital signal processing refers to the way energy in
the signal is distributed over its various frequency components.

Digital signal processing involves discrete signals that means signals which are
sampled at regular intervals of time rather than continuous signals. A modified
form of the Fourier transform, known as the discrete Fourier transform or DFT,
is used in the case of sampled (discrete) signals. To compute the DFT of a signal
comprising 1000 samples, say, would entail of the order of one million (10002)
calculations. The DFT is therefore an extremely numerically intensive procedure.
With this procedure we get extremely accurate information about the frequency
components of a signal with the huge computational effort. With the development
of the digital computer it is not a problem to perform numerical calculation rapidly
and accurately. These calculations were performed by using DFT procedure until
the 1960s when Cooley and Tukey [3], discovered a numerical algorithm which
allows the DFT to be evaluated with a significant reduction in the amount of
calculation required. This algorithm, called the fast Fourier transform, or FFT,
allows the discrete Fourier transform of a sampled signal to be obtained rapidly
and efficiently. Nowadays, the FFT is used in many areas of applied problems
because of its rapidity, accuracy and efficiency. Thus the FFT is nothing but the
DFT which is very popular among scientists and engineers because of the reason
cited above.

2 Some preliminaries leading to the fast Fourier transforms

The formulas for the Fourier transform and its inverse are given by (see [5,6])

F{f(x)} =

∫ ∞

−∞
f(x)e−2πixydx = g(y) (1)

f(x) =

∫ ∞

−∞
g(y)e2πixydy = F−1{g(y)} (2)

where x is treated as the time variable and y the frequency. We use these symbols
to make them universally valid because the Fourier transform can be regarded
as ubiquitous. The Fourier transform has long been a principle analytical tool in
such diverse fields as linear system, probability theory, quantum physics, antennas,
distribution theory and signal processing. We know that the impulse function δ(x)
is defined as ∫ ∞

−∞
δ(x− x0)f(x)dx = f(x0) (3)
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Figure 1: A sequence of periodic delta functions f(x) =
∑∞

n=−∞ δ(x− 2nℓ).

where f(x) is an arbitrary function continuous at x = x0. Application of the
definition (3) yields Fourier transform of many important functions very easily.
A ‘unitary function’ U(x) can be found, which is a good function vanishing for
|x| ≥ 1 and such that (see [5])

∞∑
n=−∞

U(x+ n) = 1 (4)

for all x. The Fourier transform V (y) of any such function has V (0) = 1,
but V (m) = 0 if m is an integer other than zero. The Fourier transform of a
sequence of equal distant impulse functions δ(x) is another sequence of equal
distant impulses: Mathematically, if 2ℓ is the period of the sequence of functions,
then we need to prove that

f(x) =
∞∑

n=−∞
δ(x− 2ℓn)

F{f(x)} = g(y) =
1

2ℓ

∞∑
n=−∞

δ
(
y − n

2ℓ

)
.

The Fourier series can be written as [7]

f(x) =
1

2ℓ

∞∑
n=−∞

einπx/ℓ =
∞∑

n=−∞
δ(x− 2nℓ) =

1

2ℓ
+

1

ℓ

∞∑
n=−∞

cos
(nπx

ℓ

)
.

Thus through this investigation we have found an important relationship that

2ℓ
∞∑

n=−∞
δ(x− 2nℓ) = 1 + 2

∞∑
n=−∞

cos
(nπx

ℓ

)
.

Figure 1 depicts the periodic impulse of the delta function whereas Figure 2
depicts its transform as a row of periodic delta functions.
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Figure 2: A sequence of the Fourier transform of periodic impulse functions
g(y) = 1

2ℓ

∑∞
n=−∞ δ(y − n

2ℓ ) .

3 The discrete Fourier transform

We develop the discrete function as follows. When f(x), a continuous function,
is sampled at regular interval of period 2ℓ the usual Fourier transform technique
is modified. A diagrammatic form of a simple sample together with its associated
input-output waveforms is depicted in the following Figure 3.

Figure 3: (a) A sketch of the continuous function f(x); (b) A sketch of the discrete
function f̂(x).

Let us consider the sampling frequency to be ys = 1
2ℓ which is the cycle per

second and is called Hertz. Here f(x) is the continuous function and f̂(x) is the
discrete version of f(x). Defining the set of impulse functions δ̂(x) by

δ̂(x) =

∞∑
n=−∞

δ(x− 2nℓ),
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the input-output relationship of the sample becomes

f̂(x) = f(x)δ̂(x)

=

∞∑
n=−∞

f(x)δ(x− 2nℓ)

=
∞∑

n=−∞
f(2nℓ)δ(x− 2nℓ)

where for a given f(x) and (2ℓ), the f̂(x) is unique, but the converse is not true.
The above infinite series can be truncated to finite number of terms if we use the
following rectangular function of amplitude unity.

u(x) =

{
1 −ℓ < x < λ− ℓ

0 otherwise

where λ is the total length of time such that there are N samples each of length 2ℓ
and hence 2ℓ = λ

N . Thus the above series can be rewritten as follows:

f̂(x)u(x) =
N−1∑
n=0

f(2nℓ)δ(x− 2nℓ),

where it has been assumed that there are N equidistant impulse functions lying
within the truncation interval , i.e., N = λ

2ℓ . The sampled truncation waveform
and its Fourier transform are suitable because truncation in time domain results in
rippling in the frequency domain.

To get our original transform pair from a discrete Fourier transform pair, we
need to modify to sample the Fourier transform of the above equation. In the time
domain this product is equivalent to convolving the sample truncated waveform of
the above and the time function

δ̂1(x) = λ
∞∑

r=−∞
δ(x− rλ) =

∞∑
r=−∞

e2πirx/λ.

Because δ̂1(x) function is periodic with period λ.
Referring to Brigham [1], the desired relationship can be written as follows:

f̃(x) = f(x)δ̂(x)u(x) ∗ δ̂1(x)

= λ
∞∑

r=−∞

{
N−1∑
n=0

f(2nℓ)δ(x− 2nℓ− rλ)

}
(5)

where f̃(x) is the approximation to the function f(x). This function is a periodic
function with period λ and hence we can expand it as a Fourier series expansion
and this series is given as follows:
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f̃(x) =

∞∑
n=−∞

Cne
2πinx/λ (6)

where Cn is the Fourier coefficient and actually it is defined as the discrete Fourier
transform. Thus the problem reduces to determine this Fourier coefficient and our
goal will be achieved. Using the definition to find the Fourier coefficient Cn yields

Cn =
1

λ

∫ λ−ℓ

−ℓ

f̃xe−2πinx/λdx

=
1

λ

∫ λ−ℓ

−ℓ

λ
∞∑

r=−∞

{
N−1∑
k=0

f(2kℓ)δ(x− 2kℓ− rλ)

}
e−2πinx/λdx

=

∫ λ−ℓ

−ℓ

{
N−1∑
k=0

f(2kℓ)δ(x− 2kℓ)

}
e−2πinx/λdx

=

N−1∑
k=0

f(2ℓk)e−2πink/N n = 0,±1,±2, · · · . (7)

In evaluating this integral we have used the fact that the integration is done only
over one period putting r = 0, and that 2ℓ = λ

N .
Thus we can write the Fourier transform of the approximate periodic function

f̃(x) as

g̃(y) =
N−1∑
k=0

f(2ℓk)e−2πink/N n = 0, 1, 2, · · · , N − 1. (8)

If we define y = n△y such that △y(2ℓ) = 1
N , then the discrete Fourier

transform will take the following familiar form

g̃
( n

2ℓN

)
=

N−1∑
k=0

f(2ℓk)e−2πink/N n = 0, 1, 2, · · · , N − 1. (9)

Equation (9) is the desired discrete Fourier transform ; the expression relates N
samples of time and N samples of frequency by means of the continuous Fourier
transform. The discrete Fourier transform is then a special case of the continuous
Fourier transform.

A graphical development of the discrete Fourier transform pairs has been
depicted in Figures 4 and 5. Figure 4 is sketched using analytical treatment of
the continuous Fourier transform whereas Figure 5 is depicted due to the discrete
Fourier transform pair just developed. The discrete Fourier transform pair of Figure
5 is acceptable for the purpose of the digital machine computation since both
the time and frequency domain are repeated by discrete values. In this figure,
the original time function Figure 4 is approximated by N samples; the original
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Figure 4: (a) The graph of a continuous function f(x); (b) The graph of the Fourier
transform of the continuous function f(x), i.e., g(y) = 2a

a2+4π2y2 .

Figure 5: Graphical development of the discrete Fourier transform [1].

Fourier transform g(y) is also approximated by N samples. These N samples
define the discrete Fourier transform pair and approximate the original Fourier
transform pair. It is easily noted from these figures that the sampling of the time
and the frequency functions display that they are periodic functions which should
be the case because of discrete behavior of the functions. Thus this algorithm
seems suitable for the numerical computation. It is to be noted that these forms
are predicted by earlier workers in this important field of research.

4 Mathematical aspects of FFT

In this section we shall briefly describe the mathematical development leading to
the discrete Fourier transform (DFT) and then to the FFT. To do this we need
to bring the Fourier series pair and the Fourier transform pair which are already
developed in the previous chapters for ready reference. The Fourier series pair and
the Fourier transform pair are respectively given by the following equations. The
Fourier series pair in complex variable form is:

f(x) =
∞∑

n=−∞
Cne

inπx/ℓ

Cn =
1

2ℓ

∫ ℓ

−ℓ

f(x)e−inπx/ℓdx. (10)
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The Fourier transforms can be defined in two ways. The first definition is:

F{f(x)} =

∫ ∞

−∞
f(x)e−2πixydx = g(y)

f(x) =

∫ ∞

−∞
g(y)e2πixydy = F−1{g(y)}. (11)

The second definition (conventional) is:

F{f(x)} =

∫ ∞

−∞
f(x)e−ikxdx = g(k)

f(x) =
1

2π

∫ ∞

−∞
g(k)eikxdk = F−1{g(k)}. (12)

The first equation in equations (11) is the Fourier transform and the second
equation is its inverse. Similarly, the first equation (12) is the Fourier transform
and the second equation is its inverse. They are equivalent. It is obvious that
2πy = k such that dy = 1

2πdk. It is to be noted here that the fast Fourier transform
(FFT) is a discrete Fourier transform algorithm which reduces the number of
computations needed for N points from N2 to N log2N , where log2 is the base-2
logarithm. FFTs were first discussed by Cooley and Tukey [3], although Gauss [4]
had actually described the critical factorization step as early as 1805. The DFT
version of Fourier transforms can be derived by discretizing the equation (11) in
the following manner. In the signal processing literature, it is usual practice to
write the DFT and its inverse in the more pure form as given below

g(p) =

N−1∑
n=0

f(n△t) exp(−i2πpn△t/N), p = 0, 1, 2, · · · , N − 1 (13)

f(n△t) =
N−1∑
p=0

g(p) exp(i2πpn△t/N), n = 0, 1, 2, · · · , N − 1 (14)

where f(n△t) denotes the input signal at time (sample) n△t, and g(p) denotes
the pth spectral sample. This form is the simplest mathematically.

5 The fast Fourier transform algorithm

We have already developed the relationship between the continuous Fourier
transform and the discrete Fourier transform in the last section. We illustrate the
application of the discrete Fourier transform DFT and then how this transform
plays a vital role in the development of the fast Fourier transform (FFT). One
does not need any special expertise to formulate the FFT algorithm. The FFT
is simply an algorithm. It is just a particular method of performing a series of
machine calculation which can compute the discrete Fourier transform much more
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rapidly than other available algorithms. We will discuss in this section very briefly
the computational aspect of the algorithm.

With reference to the equation (9), we rewrite the equation in a simple form so
that a non-expert in this field can very easily understand the algorithm. To simplify
the matter, we replace 2ℓk by k and n

2ℓN by n so that our new equation will look
like as follows:

g(n) =
N−1∑
k=0

f(k)e−2πink/N , n = 0, 1, 2, 3, · · · , N − 1. (15)

This equation implies that it is a N × N matrix equation that means it is an
algebraic equation of n unknowns. Let us define e−2πi/N = ω so that the equation
(15) can be rewritten in compact form as

g(n) = ωnkf(k). (16)

This is a matrix equation displayed in bold faces. It is to be noted that this
equation is a complex equation because ω and f(k) complex and so there are
N2 complex multiplication and N(N − 1) complex additions that are needed to
perform the required matrix computation. The FFT owes its success to the fact
that the algorithm reduces the number of multiplications and additions required
in computation of (16). Thus we can see that FFT is nothing but the DFT. Only
difference is that FFT works much faster than DFT in terms of computer time
and efficiency. For N = 2m the FFT algorithm is then simply a procedure for
factoring an N × N matrix into m matrices (each N × N ) such that each of
these factored matrices has the special property of minimizing the number of
complex multiplications and additions. If we consider N = 4 = 22, such that
m = 2, we note that the FFT requires N × m/2 = 4 complex multiplications
and N ×m = 8 complex addition, whereas the direct method requires N2 = 16
complex multiplications and N(N − 1) = 4 × 3 = 12 complex additions. If we
assume that the computing time is proportional to the number of multiplications,
the approximate ratio of the direct to FFT computing time is given by

N2

N ×m/2
=

2N

m
= 4.

If N = 1024 = 210 = 2m, then m = 10 and the ratio = 2N
m = 2×1024

10 = 204.8.
That means the computational reduction of more than 200 to 1. This is a fantastic
saving of time by the FFT algorithm.

The fast Fourier transform (FFT) is computational algorithm which reduces
the computational time of the discrete Fourier transform to a time proportional
to N log2N . This increase in computing speed has completely revolutionized
many facets of scientific analysis. A historical review of the discovery of the FFT
illustrates that this important development was almost ignored. As for example if
N = 1024, then DFT computing time will be N2 = 10242 = 1048576 whereas
the FFT computing time will be N log2N = N

{
lnN
ln 2

}
= 1024 × ln 1024

ln 2 =
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1024×10 = 10240. This is really a fantastic saving in computational time by FFT
algorithm.

6 Cooley–Tukey algorithms

So far we have found that the most common FFT is the Cooley–Tukey algorithm.
This is a divide and conquer algorithm that recursively breaks down a DFT of
any composite size N = N1N2 into many smaller DFTs of sizes N1 and N2,
along with O(N) multiplications by complex roots of unity traditionally called
twiddle factors. The most well-known use of the Cooley–Tukey algorithm is to
divide the transform into two pieces of size N/2 at each step, and is therefore
limited to power- of - two sizes, but any factorization can be used in general (as
was known to both Gauss and Cooley and Tukey). These are called the radix-2
and mixed-radix cases, respectively. Although the basic idea is recursive, most
traditional implementations rearrange the algorithm to avoid explicit recursion.
Since the Cooley−Tukey algorithm breaks the DFT into smaller DFTs, it can be
combined arbitrarily with any other algorithm for the DFT.

7 An application of FFT to wave energy spectral density

We shall not go deep into the algorithm of the FFT rather in the following we
will demonstrate an application of wave energy spectral density as described by
Chakrabarti [6] (see also [2]). In random sea state on a short term basis maintains
certain identifiable statistical properties and is best represented by its energy
density spectrum. The total energy of a wave E (per unit surface area) in the wave
record between infinite time limits is given by the integral

E =
1

2
ρg

∫ ∞

−∞
|η(t)|2dt (17)

where η(t) is the wave elevation, ρ is the density and g is the acceleration due to
gravity. Chakrabarti [2] has defined that the energy spectral density by FFT can be
obtained as

S(ω) =
1

Ts

∣∣∣∣∣
N∑

n=1

η(n△t)exp(i2πf(n△t))△t

∣∣∣∣∣
2

. (18)

Usually in the FFT calculation, the total data length , Ts, is divided into a number
of smaller segments, M , each one having an equal number of data points , N at a
constant time increment, △t. The final result then is averaged over theM sections.
The advantage of this method has already mentioned above. We now discuss what
parameters are involved in the computation by FFT. The variables that have to be
selected before an energy spectrum of a wave record can be obtained by the FFT
algorithm are: Number of sections, M ; Number of data points in each section,
N (a power of 2); Time increment or sampling rate, △t; Frequency increment
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Figure 6: Variation of energy density spectral shape of wave record (fixed Ts) with
variation of N (or alternatively, △t for a fixed M ). From Chakrabarti,
Computational Mechanics Publications, Southampton Boston (1987).

or resolution, △f ; and Frequency range, or so-called Nyquist frequency, fN . The
first three of these quantities have to be independently selected. The length of the
record , Ts is dependent on M,N, and △t, i.e., Ts =MN△t. For a given record,
Ts and △t are fixed, so that the total number of data points can be obtained from
these values. Thus, the only choice that has to be made is the number of sections,
M . If we know the first three variables, the last two can be calculated as follows:

△f =
1

N(△t)
(19)

fN =
1

2(△t)
. (20)

Note that the length of wave record is always finite. This requires limiting the
Fourier transform in the evaluation of the energy spectrum to a finite Fourier
transform. An example of the effect of varying N is shown in Fig. 6. Note that
the energy density spectrum is composed of finite number of frequencies and
higher values of N reveals the individual peaks and reduce the confidence in the
ordinary values. The values of Hs (significant wave height), however, is relatively
unchanged. In particular, the value of M is usually taken as M ≥ 8, while the
value of N is normally between 512 and 2048.
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