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Abstract

Marine structures are usually designed to operate in a wave environment. Struc-
tural loading of the body surface under the water and unsteady motions of the
body are two of the principal resulting problems. A body in waves is also acted
upon by steady forces and moments due to the reflection of the wave energy and
as a consequence, the body starts drifting, depending on the rigidity of the con-
straint. The drift loads on marine structures are important in designing mooring
or dynamic positioning devices. The most general way to compute these steady
loads is the application of the pressure integration around the wetted surface of
the body. An exact solution for the computation of second-order drift forces and
moments for arbitrary bodies are presented using a non-singular boundary integral
equation method (NBIEM) and the application of B-spline to model the wetted
body surface in wave. The influences of radiation velocity potentials on drift loads
are investigated for different types of bodies.
Keywords: drift forces, wave radiation, second-order steady force, wave-body
interactions, arbitrary bodies, spherical structures, boundary integral methods.

1 Introduction

Marine structures are usually designed to operate in a wave environment. Struc-
tural loading of the body surface under the water and unsteady motions of the
body are two of the principal resulting problems. When the characteristic body
dimension is comparable to the wave length, the potential effects dominate. The
presence of the body alters the pattern of wave propagation in the vicinity of the
structure and causes wave scattering. The body may also oscillate and cause the
radiation of waves if the constraints are not sufficiently rigid. As a consequence,
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the body experiences reacting forces from the surrounding fluid and constraints.
For this study, it is assumed that the fluid is homogeneous and incompressible, and
the effect of the surface tension is neglected.

The viscosity of the fluid and the irrotational flow are important in determining
the wave-induced loads and motions of the body. If the amplitude of the wave is
small in comparison with the characteristic length of the body, the effects of the
flow separation due to the fluid viscosity may be neglected. As a consequence, the
fluid can be considered inviscid, and the whole fluid flow can be characterized by
a scalar function called the velocity potential. This function is a solution of the
Laplace equation and is subjected to nonlinear boundary conditions on variable
surfaces. The nonlinearity of the boundary conditions precludes solutions without
further simplifications. If it is assumed that the steepness of the wave is small, the
free surface boundary condition can be linearized and applied on the undisturbed
free surface of the fluid. Further simplification is obtained by considering small
motions of the body.

In linearized wave theory, the problem is reduced to an analysis of the loads
and motions of the body in plane progressive sinusoidal waves. It is assumed that
the motions of the body are steady, and all of the transient effects are removed.
A combination of two independent classical problems is considered in order to
find the body-induced motions and loads in time harmonic waves. The first is the
radiation problem, where the body undergoes prescribed oscillatory motions in
otherwise calm fluid. The other is the diffraction problem, where the body is held
fixed in the incident wave field and determines its influence over the incident wave.

A body in waves is also acted upon by steady force and moment due to the
reflection of the wave energy. As a consequence, the body starts drifting, depend-
ing on the rigidity of the constraint. These are called the drift force and moment
and are important in designing mooring or dynamic positioning devices. These
steady loads can be computed in two ways: either from the far field method and
the application of the conservation of momentum in the fluid, or from the near field
method and the application of the pressure integration around the wetted surface
of the body.A detailed descriptions of both method may be found in Ogilvie [7]
and Pinkster and Oortmerssen [8].

The boundary integral equation method is applied to obtain the first order veloc-
ity potentials through the solution of diffraction and radiation problems. These
two boundary value problems are of elliptical types that lead to integral equations
with singular kernels. If the surfaces satisfy the Liaponov conditions, the kernels
of the integral equations possess weak singularities (Pogorzelski [9]). The limit of
an integral with weak singular integrand exists at the singular point and is inde-
pendent of the shape of the exclusion zone. The integral equation with a weakly
singular kernel function satisfies Fredholm theorems and hence is non-singular.
Fredholm equations of the second kind can be approximated in a straightforward
way by means of Gaussian quadrature formulas in which the integral equations are
replaced by a weighted sum of values of the integrand evaluated at certain points.
The application of the Gaussian quadrature in solution of integral equations with-
out attention to singular behavior of the integral kernels may result in erroneous
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solutions. Therefore, it is necessary to regularize the kernel of the integrals and
make the integral equations amenable to solution directly by the Gaussian quadra-
ture formulas.

A weakly singular integral may be regularized by subtracting a proper function
from the integrand so that the integral tends to zero at the singular points. Then,
the exact integration of that function adds to the integral equation. Based on this
idea, Landweber and Macagno [1] introduced a numerical scheme for solving the
irrotational flow about ship forms. Following the procedure adopted by Landweber
and Macagno [1] in the treatment of the singularity of the kernels of the integral
equation in potential flow, Mousavizadegan et al. [5, 6] extended a numerical tech-
nique for solving the radiation and diffraction problem of submerged and floating
bodies in waves in the case of infinite fluid depth. A comparison of the method
with the flat panel method was presented by Mousavizadegan and Rahman [4] to
show the effectiveness of this higher-order method. Different types of the geometry
modeling, either implicitly or explicitly, can be applied to solution of the integral
equation. Therefore, the method may be categorized as an independent geome-
try modeling method. This is shown by Mousavizadegan and Rahman [3] using
different representation of the body surface geometry of various structures in the
cases of finite and infinite fluid depth. There is no need to approximate the velocity
potential distributions around the body surface. The order of the velocity potential
corresponds to the number of the Gaussian points. These imply that the method is
a higher-order method with an arbitrary degree.

One of the important features of the presented method is the ability to use the
exact geometry in computations. If the Gaussian quadrature points, the normal
at those points and the area element around those points are all computed accu-
rately, it will enhance the accuracy of computations. The body surface may be
modeled differently with various basis functions. All types of parametric expres-
sions of body surface can be applied in solving the associated integral equations.
This makes the method independent from geometrical modeling. There are only a
few special geometries that have exact implicit and explicit expressions for their
surfaces. In general, it is necessary to construct approximations to the body sur-
faces in an explicit manner.

The advent and first development of interactive computer graphics has initiated
several curve and surface representation techniques. B-spline curves and surfaces
are powerful tools in curve fitting and curve fairing techniques. The successful
use of B-spline functions in representing and modifying the surface of the marine
structures, such as a ship’s hull, initiated the idea of the application of B-spline
panels in boundary integral equation methods.

2 Mathematical formulations

It is assumed that the fluid is incompressible and the motion is irrotational. The
fluid flow field can be defined by a velocity potential that is expressed in finite
amplitude wave theory by a series in power of ε in the form

� = ε�1 + ε2�2 + · · · + εn�n + · · · ,
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where ε is the perturbation parameter that is proportional to the wave slop (wave
height to wave length) and εn�n is the nth-order velocity potential. If the analysis
is approximated up to the second-order, it can be written that

� = �� + �q = �
{
φ�e

−iωt + φqe−i2ωt

}
,

where �� and �q are the linear and the quadratic diffraction velocity potentials,
ω is the radian frequency and t denotes the time. The terms φ� and φq are the
linear and quadratic time-independent velocity potentials. The motion of the fluid
is subjected to the Laplace equation in fluid domains, a free-surface kinematic
boundary condition and a free-surface dynamic boundary condition. The fluid flow
field is also subjected to a bottom condition that indicates no flux of mass through
the bottom of the fluid, a radiation condition at large distance from the body and a
body surface boundary condition.

The total force and moment vector acting upon the body due to the wave prop-
agation is obtained by

F =
∫∫∫

SB

P (x, t) n ds

M =
∫∫∫

SB

P (x, t) (x × n) ds (1)

where ds is the elemental surface area and SB is the wetted surface of the body.
This surface SB is displaced and rotated with respect to a equilibrium condition
that is specified with SBM . The term x is the position vector of a point with respect
to the coordinate Oxyz that is an inertial reference frame system on the undis-
turbed water surface, x = xî + yĵ + zk̂. The position vector with respect to a
body fixed reference coordinate system Ox ′y ′z′ is x′ = x ′ î + y ′ĵ + z′k̂. It is taken
into account that two coordinate systems are coincided with each other at t = 0.
Transformation between two coordinate system may be given in the form:

x = x′ + ξ + α × x′ + H x′ + O(ε3) (2)

where ξ = (ξ1, ξ2, ξ3) is the translation and α = (ξ4, ξ5, ξ6) is the rotation of the
body reference coordinate system with respect to the inertial reference coordinate
systems at a time t . The matrix H is the second-order transformation matrix.

H = −1

2

[ξ2
5 + ξ2

6 0 0

−2ξ4ξ5 ξ2
4 + ξ2

6 0

−2ξ4ξ6 −2ξ5ξ6 ξ2
4 + ξ2

5

]
(3)

The unit normal vector in inertial reference frame system is denoted by n. The
transformation of the unit normal vector between two coordinate systems is

n = n′ + α × n′ + H n′ + O(ε3) (4)

where n′ is the unit normal vector in body reference frame system. The term
denoted by ε is the perturbation parameter.
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The pressure P can be obtained from Bernoulli’s equation. For equilibrium con-
dition and wetted surface SBM , it can be written that

P = −ρgz − ερ
∂��

∂t

− ε2ρ

{
∂�q

∂t
+ 1

2

[(
∂��

∂x

)2

+
(

∂��

∂y

)2

+
(

∂��

∂z

)2]}
+ O(ε3)

(5)

The first term on the right hand side of (5) is hydrostatic pressure and the rest are
the hydrodynamic pressures due to the first and second order potentials. The pres-
sure at exact wetted surface SB can be expressed using the Taylor series expansion
with respect to SBM .

P |SB = P |SBM + (x − x′) · ∇P + · · · (6)

Substituting (4) in (5) and using (2), the pressure on the exact wetted surface of
the body is

P = −ρgz′ − ε[ρg(ξ3 + y ′ξ4 − x ′ξ5)] − ε2[ρg(Hx′ · ∇z)]
− ερ

∂��

∂t
− ε2[ρ(ξ + α × x′) · ∇

(
∂��

∂t

)
]

− ε2ρ

{
∂�q

∂t
+ 1

2

[(
∂��

∂x

)2

+
(

∂��

∂y

)2

+
(

∂��

∂z

)2]}
+ O(ε3)

(7)

The forces and moments acting on the body may be obtained by the integration
over SBM and taking into account (3) and (5) by considering an adjustment. The
integration over SB is to be carried out up to the water surface z = η.

η = η0 + εη1 + ε2η2 + · · · (8)

where η is the instantaneous elevation of the water free surface and η0, η1&η2
are the zeroth-, the first- and the second-order free surface elevations, respectively.
The integration over SBM is to be carried out up to the water surface z = 0 that is
correspond to z = ξ3 + yξ4 − xξ5 on SB . Therefore, it can be written that:

F =
∫∫

SBM

P (x, t) n ds +
∫∫


S

P(x, t) n ds

M =
∫∫

SBM

P (x, t) (x × n) ds +
∫∫


S

P(x, t) (x × n) ds. (9)
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The integration over a thin layer 
S can be given up to second order in the form∫∫

S

P(x, t) n ds =
∮

CM

d�

∫ ε[η1−(ξ3+yξ4−xξ5)]

0
n(x, y, 0) dz′

{

ε[−ρgz′ − ρg(ξ3 + y ′ξ4 − x ′ξ5)] − ερ

(
∂��

∂t

)
z=0

}
+ O(ε3)

= 1

2
ρgε2

∮
CM

[η1 − (ξ3 + yξ4 − xξ5)]2n(x, y, 0) d� + O(ε3) (10)

That is a point force around the intersection of the body with water surface, CM .
The moment due to this point force can be given in the following form.∫∫


S

P(x, t) (x × n) ds = 1

2
ρgε2

∮
CM

[η1 − (ξ3 + yξ4 − xξ5)]2(x × n)|z=0 d� + O(ε3) (11)

The total second-order forces and moments on a floating body is obtained by inte-
grating of (7) over SBM and adding with (10) and (11).

There is also a mean second-order wave force arising from
i - quadratic term in the Bernoulli equation and according to the general iden-

tity of functions of complex variable;

�(Ueiωt )�(V eiωt ) = 1

2
�(UV ei2ωt + UV ∗),

ii - a mean average force due to the variation of the first order dynamic pressure.
The total time average forces and moments up to second order according to

Ogilvie [7] are:

Fd = −ρ

∫∫
SBM

[
1

2
|∇��|2 + (ξ� + α� × x) · ∇��t

]
nds

+
∮

CM

[η1 − (ξ3 + yξ4 − xξ5)]2n d�

− ρgAwpα�3(xf α�1 + yf α�2)∇z + O(ε3) (12)

Md = −ρ

∫∫
SBM

[
1

2
|∇��|2 + (ξ� + α� × x) · ∇��t

]
(x × n)ds

+
∮

CM

[η1 − (ξ3 + yξ4 − xξ5)]2(x × n) d�

− ρgAwpα�3(xf α�1 + yf α�2)(x × ∇z) + O(ε3) (13)

The first integral in both formulae is distributed forces and moments around the
mean wetted surface of the body due to the velocity of the fluid particles and the
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variation of the first-order hydrodynamic pressure. The second integral in both
formulae is due to the variation of the fluid surface at the water-line of the body.
These are the contribution of the first-order velocity potential to the second order
steady force. There is no mean forces and moments due to the second-order poten-
tial. The knowledge of the first-order potential is enough to compute these steady
second-order effects.

A combination of two independent classical problems is considered in order to
find the first-order velocity potentials due to the body-induced motions and loads in
time harmonic waves. The first is the radiation problem, where the body undergoes
prescribed oscillatory motions in otherwise calm fluid. The other is the diffraction
problem, where the body is held fixed in the incident wave field and determines
its influence over the incident wave. The radiation and diffraction problems are
subjected to the Laplace equation in the fluid domain, and a set of boundary con-
ditions. The boundaries of the fluid consist of the free surface, a fixed bottom and
the immersed surface of the body. There are two sets of boundary conditions that
must be held on the surfaces that confine the fluid. The first set is the kinematic
boundary conditions. These indicate that the normal velocity of a fluid particle just
near a point of these surfaces should be equal to the normal velocity of that point.
The other set is the dynamic boundary conditions. The modern theories of water
waves and the motion of bodies in waves can be found in Rahman [10].

The boundary integral equation method is applied to obtained all components
of the velocity potential of a body in regular wave. The techniques of Landwe-
ber and Macagno [1] are applied to modify the kernels of the integral equations
associated with the motion of bodies in time-harmonic waves. The modified inte-
gral equations are nonsingular and amenable to solution directly by the Gaussian
quadrature formula. The collocation method is applied to form systems of alge-
braic equations. The collocation points and the integral points coincide with each
other. The system of linear algebraic equations may be presented in matrix form
as

[A]{x} = {B}, (14)

where the vector {x} is the unknown velocity potentials around the body. The term
denoted by [A] is the coefficient matrix. It is formed by the integration of the
normal derivative of Green’s function on each integration point. The term denoted
by B is a vector that its elements are obtain through the application of the body
surface boundary condition for the diffraction and radiation velocity potentials. A
complete description of the method can be found in Mousavizadegan [2].

3 Results and discussion

The method is applied to several bodies but we only mentioned the result for a
submerged sphere in regular wave. The body is modeled by B-spline as given in
Fig. 1. The figure shows the distribution of the quadrature points around a quarter
sphere.
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Figure 1: Distribution of the Gaussian quadrature points around the surface of a
sphere.

Figure 2: Drift force on a sphere due to the diffraction velocity potential.

Figure 3: Total drift force at different immersion depths and ZG/a = 0.1.
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The numerical results for the non-dimensional horizontal drift force in different
immersion depths are shown in Figs. 2 and 3. The first figure shows the drift force
coefficients when the effect of the motion is neglected and the second one depicts
the total drift force coefficient due to the total velocity potentials. The center of the
mass is set to be 0.1a under the center of the sphere. The analytical solutions are
also shown to provide a comparison between them. The analytical and numerical
solutions comply with each other.
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