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Abstract 

The proposed paper deals with the seismic protection of bridges by means of 
passive energy dissipation viscous devices installed between the continuous 
beam deck and the supporting piers. An analytical approach is used to study the 
problem and a simple design procedure, using the frequency response analysis, is 
provided to determine the optimal value of the viscous damping parameter 
characterizing the dampers. Finally, the adequacy of the procedure is verified 
through time history analyses on an existing bridge.  
Keywords:  bridges, retrofit of bridges, viscous devices, passive control. 

1 Introduction 

The most recent bridges’ seismic design procedures, which are essentially related 
to the concepts of performance-based and damage-controlled design, have made 
clear that the only increase of the design force levels does not improve the 
earthquake bridge performance. The preferential innovative strategy for 
controlling excessive vibrations induced by earthquake loads in new bridge 
structures (design perspective) as well as in existing ones (retrofit perspective), is 
the use of supplemental energy dissipation systems. They generally require a 
relative movement in the structure to activate the dissipation devices. The aim of 
incorporating supplemental damping devices in the design or retrofit of a bridge 
structure is the reduction of the dynamic response amplification. This is obtained 
by increasing the structural equivalent viscous damping according to the 
response spectra of the earthquake record at the site. In fact, the addition of a 
supplemental damping to a structure is more beneficial if the fundamental period 
of the construction including the damping devices falls within the range where 
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dynamic amplification occurs for the expected earthquake motion. In Italy, with 
the recently approved seismic code for earthquake resistant structures, few 
simple code requirements are provided for the use of supplemental energy 
dissipation devices in bridges [1]. 

Several different types of energy dissipation devices have been proposed for 
this purpose. For bridges, the most effective and extensively applied are the 
viscous fluid dampers operating on the principle of fluid flow through orifices.  
During the last years, significant research efforts have been made in the 
development of the manufactured energy absorbing devices, and in their 
analytical and experimental characterization, while the progresses in the 
definition of specific design procedures have been slower. However, a few 
authors have tackled the problem and proposed some procedures referred to 
different energy dissipation devices introduced in bridges’ isolation systems [2, 
3, 4, 5]. 

For a particular class of bridges as specified in the next paragraph, a 
completely new design procedure based on minimization of response in the 
frequency domain has been developed and is presented in this paper.  

2 Optimal design of protection system 

Several existing bridges are characterized by a continuous deck connected to 
some piers through fixed bearings, and to others through bearings allowing 
sliding in the longitudinal direction (Figure 1a). In this way, the earthquake load 
on the whole deck is transferred to the fixed piers only. Limitation of deck 
displacements and accelerations and a significant reduction of the stresses on the 
fixed piers can be achieved through the insertion of passive viscous energy 
dissipation devices between the bridge deck and the longitudinally free piers. In 
the case of piers characterized by the same height and cross-section, a simplified 
SDOF model of such a kind of bridge is shown in Figure 1b, where fk  is the 
global stiffness of the fixed piers, bk  is the global stiffness of the other piers, 

fm  is the total mass of the deck, and dC  is the viscous damping parameter 
characterizing the passive linear viscous dampers. 
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Figure 1: (a) Scheme of existing bridge, (b) SDOF model. 

To the aim of singling out the optimal viscous damping constant dC  able to 
optimize the bridge response in terms of deck displacement, a frequency domain 
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approach has been used to analytically examine the system in Figure 1b 
subjected to a harmonic base displacement ( ) ti

gg extx ϖ⋅= max,  [6].  
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Figure 2: (a) ( ) ζ−ζf  cycle, (b) transfer functions ( )βζ max,f  for 0.1=κ . 

 
The general expression of the equation of motion is the following: 

 ti
gfdffff exmFxkxm ϖ⋅ϖ=+⋅+⋅ max,

2  (1) 

where ( )bfdbbd xxCxkF −⋅=⋅= . The force – displacement relationship for the 
Maxwell element composed by the spring bk  and the viscous dashpot dC  in 
series is given by the well known expression ( ) ( ) fdfd xKxF ⋅ϖ= , where the 
complex stiffness ( )ϖdK  is obtained as follows: 

 

( ) ( ) ( )ϖ′′+ϖ′=
ϖ+

ϖ
+

ϖ+

ϖ
=ϖ⇒

⇒
ϖ+

ϖ+ϖ
=⇒








ϖ

+=
ϖ

−
+=

dd
db

db

db

db
d

f
db

dbdb
d

db
d

bf
bf

KiK
Ck

Ck
i

Ck
Ck

K

x
Ck

CikCk
F

Cik
F

i
xx

xx

222

2

222

22

222

22211

 (2) 

and ( )ϖ′dK  and ( )ϖ′′dK  are respectively the storage and the loss modulus of the 
Maxwell element. Therefore Eq (1) can be written as: 

 ( ) ( )[ ] ti
gffddfff exmxKiKkxm ϖ⋅ϖ=⋅ϖ′′+ϖ′++⋅ max,

2  (3) 

The above equation can be usefully written in non-dimensional form, by 
introducing two non-dimensional parameters. By considering the non-
dimensional time bt ω⋅=τ , where ( ) fbfb mkk +=ω  represents the circular 

frequency in the case of infinitely stiff damper ( +∞→dC ), and substituting the 

derived expressions ( ) ( )[ ] ( )τ=τ= fff xtxtx  and ( ) ( )τ′′⋅ω= fbf xtx 2  in Eq 3, the 
following equation of motion can be obtained: 
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with bωϖ=β . By introducing again the non-dimensional displacement 
( ) ( ) max,gff xx τ=τζ  and substituting the derived expression 

( ) ( )τζ⋅=τ′′ fgf xx max,  in Eq 4, this becomes ( ) ( ) βτβ=ζ+τζ ′′ i
ff ef 2 , where 

( ) ( )[ ] ( )[ ] ( ) ( )τζ⋅β=⋅++⋅=ζ fsgbffdfff KxkkxFxkf max,  represents the 
normalized restoring force (Figure 2a). The force – displacement relationship is 
completely defined once the complex stiffness ( )βsK  of the controlled structure 
is known: 
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where ( )β′sK  and ( )β′′sK  are the overall storage and the loss modulus of the 
controlled structure, and the non-dimensional parameters bf kk=κ  and 

ffd mkC 2=ν  represent the fixed piers/free piers relative global stiffness and 

the viscous damping ratio in the limit case +∞→bk . As the system is linear, an 
exact solution can be easily evaluated. The steady-state response 

( ) βτζ=τζ i
ff emax,  is periodic with frequency β  and the amplitude of motion is 

the modulus of the complex number ( )βζ max,f : 
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The following limit cases can be considered: 

00 =⇒=ν dC  (no damper) ( )
( ) 2

2

max,
1 β−κ+κ

β
=βζ⇒ f ; 

+∞→⇒+∞→ν dC  (infinitely stiff damper) ( )
2

2

max,
1 β−

β
=βζ⇒ f . 

The quantity ( )βζ max,f  as a function of β  is plotted in Figure 2b for 0.1=κ  

( fb kk = ) and for several different values of ν : the strong influence of the 
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device damping coefficient on the system response comes out, i.e. a deep 
modification in the dynamic behaviour of the structure can be produced by a 
change in the viscous constant of the device. All the curves have a common 
point, corresponding to the intersection of the two limit curves for 0=ν  and 

+∞→ν , whose co-ordinates are ( ) ( )[ ]κ+κ+=β 1221  and 

( ) κ+=βζ 21max,f . The belonging of this point to all the curves has been 

verified by checking that ( ) κ+=βζ 21max,f . Among such curves, that one, for 

which the aforesaid point represents a maximum, i.e. the minimum resonance 
peak in the range [ ]+∞=ν ,0 , is obtained by equating to zero the derivative of Eq 
6 with respect to β : 
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and computing it for β=β . It corresponds to the physically acceptable real root 

of the 3rd degree equation in the unknown 2ν : 

 ( )( ) ( ) ( ) ( )( ) ( )( ) 01121222142118 22223232 =−ν−κκ+−ν+κκ+κ+νκ+κ+κ  (8) 

Such real solution, provided by the well known formula of Tartaglia-
Cardano, represents the optimal (in the sense that it minimizes the amplitude of 
the resonance peak) value optν  of the parameter ν , for each assumed value of 
the parameter κ : 
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and 130 =ε=ε , 23211 i+−=ε  and 23212 i−−=ε  are the cubic roots 

of the unity. We can state that, as 0=∆ , a simple root aq −−3 22  and a 

double root aq −−− 3 2  are obtained, both real and of opposite sign: the first 
one is always positive, the second one is always negative. Therefore optν  is 
given by the square root of the first one: 
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The design spectrum in Figure 3 reports the optimal value of the damper 
parameter optν  as function of the relative stiffness κ . 
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Figure 3: Design spectra κ−ν opt . 

3 Description of the case study structure 

In the framework of the Project “Diagnostic and protection of architectural 
structures with particular reference to the effects deriving from seismic events 
and other natural disasters”, financed by the Italian Ministry of Education, 
University and Research (2002-2005), an existing continuous bridge (Viadotto 
Grandi Luci) has been selected as case study in a seismic perspective. The bridge 
is a section of the highway of Napoli (Italy) connecting Ponticelli quarter to 
Malta Street. It is considered as a way of escape from Napoli in case of natural 
disaster (i.e. eruption of Vesuvio, earthquake, etc.) and its structural scheme is a 
4-span continuous beam, having a maximum span length of 110 m. The photos 
in Figure 4 show the end piers. Piers 2 and 3 are connected to the deck through 
fixed bearings, while for the other piers (1, 4 and 5) sliding in the longitudinal 
direction is allowed using steel-teflon bearings. Photos in Figure 5 show the 
main girder from each of the two ends of the considered bridge section, while 
Figure 6 indicates the geometrical dimensions of the deck cross-section, made of 
a box-girder with cantilevers on both sides (steel Fe510 according to the Italian 
classification, i.e. SJ355 according to international classifications: characteristic 
ultimate strength ftk = 510 MPa, characteristic yield strength fyk = 355 MPa). The 
piers (Figure 4) have a variable height from approx. 26 m (pier 1) to approx. 36 
m (pier 5), and are made of reinforced concrete C25/30 with 430 MPa yielding 
stress steel reinforcement (Figure 7). Regarding soil characteristics, the upper 15 
m consist in altered pozzolana (NSPT < 15 from Standard Penetration Test), i.e. a 
fine ashes matrix including pumices. Under this stratum, a less compressible 
pozzolana is found (15 < NSPT < 50) which includes strata of fine and coarse 
sand aggregate, as well as inserts of fine pumices and lapilli.  
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Figure 4: Structural scheme of the Long Span Bridge. 
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Figure 5: Views of the deck and the main girder. 

 

 

Figure 6: Cross section of the bridge deck. 
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A Finite Element complete bi-dimensional model of the bridge has been 
developed by using beam elements (Figure 8). Table 1 shows the first 10 periods 
and mode shapes of the structure. Figures 8 and 9 show the first global 
eigenform of the bridge in the longitudinal direction and the 1st local flexural 
mode of pier 4. It is worth to note that the fixed piers represent a kind of clamped 
restraint for the two parts in which they divide the deck, because of the small 
length of the span 2–3: the 4th and 5th periods correspond, respectively, to the 
first flexural modes of the 3rd + 4th span (Figure 10) and of the 1st span 
(Figure 11). 
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Figure 7: Characteristics of the piers. 
 

Table 1:  Dynamic characteristics of the bridge. 

MODE PERIOD [s] MODE SHAPE 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2.30 
1.38 
1.18 

0.797 
0.787 
0.738 
0.537 
0.308 
0.266 
0.262 

1st global mode in longitudinal direction 
1st local flexural mode of pier 5 
1st local flexural mode of pier 4 

1st local flexural mode of 3rd + 4th span 
1st local flexural mode of 1st span 
1st local flexural mode of pier 1 

2nd local flexural mode of 3rd + 4th span 
2nd global mode in longitudinal direction 

2nd local flexural mode of 1st span 
3rd local flexural mode of 3rd + 4th span 
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Figure 8: Finite element complete model and 1st mode – 2.30 s. 
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Figure 9: 3rd eigenform – 1.18 s. 
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Figure 10: 4th eigenform – 0.80 s. 
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Figure 11: 5th eigenform – 0.79 s. 
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Figure 12: (a) Design response spectrum, (b) elastic response spectrum. 

 

© 2005 WIT Press WIT Transactions on The Built Environment, Vol 81,
 www.witpress.com, ISSN 1743-3509 (on-line) 

Earthquake Resistant Engineering Structures V  645



     The structure was constructed approximately ten years ago, when an older 
Italian seismic classification and code was in force. In the proposed paper the 
recently approved new seismic classification and code for earthquake resistant 
structures [1] has been taken into account. A Response Spectrum Analysis on the 
existing bridge, considering the first 10 modes of the structure, has been 
performed with the design response spectrum provided by the new code (Figure 
12a), obtained considering a design ground acceleration equal to 

245.225.0 smgag ==  (Napoli belongs to Zone 2 in the new Italian 
classification), a soil factor 35.1=S  which takes into account that the ground of 
the upper 15 m corresponds to the stratigraphic profile of type D (deposits of 
loose-to-medium cohesionless soil or of predominantly soft-to-firm cohesive 
soil), a behaviour factor q  assumed equal to 3.5 (bridges having piers with 
flexural behaviour: H/L ≥ 3.5), and amplified by the importance factor 3.1=γ I  
corresponding to the bridges belonging to the I category (bridges of critical 
importance). The spectral acceleration corresponding to the fundamental mode of 
the bridge is equal to 2sm93.0  and the maximum values of shear forces and 

bending moments in the fixed piers are kN1019.7 3
max, ⋅=pT  and 

mkN1008.2 5
max, ⋅⋅=pM , respectively. The latter value is much higher than the 

flexural resistance at the base of the piers mkN1074.0 5
, ⋅⋅=respM  taking into 

account the interaction  of the acting axial force kN360=pN . The maximum 
horizontal displacement of the deck is of approximately 60 cm. In order to 
reduce bridge response in terms of displacements and stresses, it has been 
proposed to include linear viscous devices between the top of each free pier and 
the deck (a total of 3 dampers are introduced). A simplified SDOF model, like 
the one in Figure 1b, has been considered to determine the optimal viscous 
damping parameter: mkN83941=fk  is the global stiffness of 2 + 3 piers 
assembly, mkN115304=bk  is the global stiffness of 1 + 4 + 5 piers assembly, 

t9177=fm  is the total mass of the deck, and dC  is the global viscous damping 
parameter of the 3 linear viscous dampers. For the relative stiffness 728.0=κ  of 
the considered bridge structure, the design procedure shown in the previous 
section provides an optimal value 3432.0=ν opt . This optimal ratio corresponds 
to the value ( )smkN63513,, == optdoptdi CC  to be assigned to the viscous 
damping coefficient of each control device. 

4 Numerical investigation 

In order to verify the adequacy of the behaviour factor q , non-linear time history 
analyses should be performed taking into account the non-linear behaviour of the 
critical structural cross-sections. However, in order only to determine the 
reduction of response caused by the insertion of linear viscous devices on top of 
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the longitudinally free piers, linear time domain analyses have been carried out. 
An ensemble of three artificial accelerograms have been generated so as to match 
the elastic response spectrum at the site ( gag 25.0= , soil type D) for 5% 
viscous damping (Figure 12b). As required by the code, it has been checked that, 
with a deficiency tolerance of 10%, the elastic response spectrum and the mean 
value of the spectral ordinates computed for the considered accelerograms on the 
interval of periods T2s15.0 ÷  (T is the fundamental period of the bridge) and for 
an equivalent viscous damping coefficient of 5% are the same. A duration of 20 s 
has been assumed for the accelerograms, with a duration of the stationary part 
equal to 10 s.    

The following figures summarize some relevant results of the numerical 
analyses performed on the complete bi-dimensional model of the structure, 
subjected to the generated artificial accelerograms amplified by the importance 
factor 3.1=γ I . Figure 13 shows the displacement fx  and acceleration fx  of 
the deck, when one of the artificial seismic input is acting: the response of the 
bridge in the actual configuration ( 0=diC ) is compared with the one in the 
retrofitted configuration including passive linear viscous devices. The viscous 
damping parameter diC  is assumed equal to the optimal value ( )smkN6351  
corresponding to the case of a harmonic displacement base input. Figure 14 
clearly indicates that this optimal value falls within a range of viscous damping 
values minimizing the response of the structure in terms of deck displacement 
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Figure 13: Comparison in terms of (a) deck displacement, (b) deck 
acceleration. 
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Figure 14: (a) Design response spectrum, (b) elastic response spectrum. 

5 Conclusions 

In several existing bridges the continuous deck is connected to some piers 
through fixed bearings, and to others through bearings which allow sliding in the 
longitudinal direction. In this way, a seismic action on the whole deck is 
transferred to the fixed piers only, so that the insertion of passive viscous energy 
dissipation devices between the bridge deck and the longitudinally free piers 
represents a solution to reduce deck displacements and fixed piers stresses. In 
this paper, for the above particular class of bridges, a completely new design 
procedure has been presented. The proposed method is based on the analytical 
determination of the response in the frequency domain to a harmonic base 
motion, and the computation of the optimal values of the viscous damping 
constant, varying the fixed piers/free piers relative stiffness. Linear time domain 
analyses have been carried out on an Italian existing bridge, in order to determine 
the reduction of seismic response caused by the insertion of linear viscous 
devices on top of the longitudinally free piers. Besides, it is demonstrated that 
the optimal value of the viscous damping parameter obtained by the above 
procedure falls within a range of viscous damping values minimizing the 
response of the bridge to a seismic input in terms of deck displacement 
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