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ABSTRACT

In this paper we describe the application of the Boundary Element Method to
the layout verification of VLSI Designs. We describe the methods for the cal-
culation of interconnection capacitances and substrate resistances with the use
of problem specific Green's functions. Emphasis is on computational efficiency
and practical accuracy. The methods are implemented in the layout extractor
Space (van der Meijs [1 ]).

INTRODUCTION

Designers of modern VLSI circuits rely heavily on layout-to-circuit extractors,
which translate a chip layout into an equivalent network suitable for electrical
verification of their layouts. Because of the growing influence of parasitic ele-
ments, such extractors must be able to model (extract) more and more parasitic
phenomena. Parasitic capacitances and coupling between different components
via the substrate of the chip are severe problems, see e.g. Bakoglu [2] and
Kup [3]. We describe Boundary Element Methods for the calculation of in-
terconnection capacitances and substrate resistances for the layout-to-circuit
extractor Space (van der Meijs [1]). These components are indicated in Fig-
ure 1. We do not attempt to solve afield problem for a given set of boundary
conditions. Instead we want to obtain a circuit model for the given physical
situation. In particular we seek the capacitance matrix Cs for the interconnect
and the indefinite admittance matrix Y for the substrate.

Boundary Element Formulation

The problems mentioned above are generally described by the equation

V(A'Vu) = 0 on a domain H. (1)
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Figure 1: Cross section of a chip.

where u denotes the potential and K is a parameter of the medium. For constant
K this equation reduces to the Laplace equation.

For the capacitance problem the domain is the semi-infinite layered half-
space above the silicon. K is the permittivity (e) of the domain. The domain
contains M conductors with inhomogeneous Dirichlet conditions. Homoge-
neous Dirichlet conditions hold at the groundplane and infinity. The unknowns
are the charges on the conductors.

For the resistance problem the domain is a cuboid with conductivity K =
I /p. The substrate is contacted by P contacts with inhomogeneous Dirichlet
conditions. Homogeneous Neumann conditions hold on the remainder of the
boundary. The unknowns are the currents through the contacts.

The above problems may be rewritten as a boundary integral equation
Brebbia [4]

au -f (2)

where overlined quantities are prescribed by boundary conditions and u* is
a fundamental solution or the (free space) Green's function. F% denotes the
part of the boundary with Dirichlet conditions and I\ denotes the part of the
boundary with Neumann conditions. Green's function satisfies

= — S(x — (3)

and can be interpreted as the potential caused by a unit point charge at Xs*
We do not use the free space Green's function, but Green's functions which
are tailored by boundary conditions additional to Equation (3) for the particular
problems. The result is such that only the third integral in Equation (2) remains.
The derivation of the Green's functions will be discussed in the next sections.
The boundary Y\ is discretized into N elements, piecewise constant shape
functions are assumed for the unknowns and using the collocation method we
obtain

•.)

element^
(4)
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or in matrixform (/ = GQ. Here (/ is the vector of N element potentials and
Q is the vector of TV unknowns on the elements. For these problems it can
be shown that a = 1. The elastance matrix G now describes the influence
between each pair of boundary elements. By defining an incidence matrix
F, which relates the element potentials II to the known conductor potential
vector V by I J — FV and the vector of element unknowns Q to the conductor
unknowns X by X = F^Q we easily find the desired model relation

X = F̂ G'-iFy = Ml/' (5)

3D INTERCONNECTION CAPACITANCE CALCULATIONS

For the case of 3-dimensional capacitance calculations, Cs = M is the desired
capacitance model. The domain is treated as a semi-inifinite stratified halfspace,
i.e. it consists of layers of constant permittivity and the substrate acts as a
groundplane. This is justified for the frequencies of interest (< IGhz). The
discussion below will be necessarily brief, see van der Meijs [5] and van
Genderen [6] for more detail and additional references.

Green's Function and Model Reduction
We write the Green's function for this problem as G(x\ Xs) — u* + %+, where
u* is the free space solution. u+ satisfies Equation (1), with the boundary con-
ditions specified in the previous section. Additionally, it satisfies the conditions
that the potential and normal derivative of the electric displacement are contin-
uous across the dielectric interfaces. Since the physical situation is rotationally
symmetric around j%,, we can write Equation (1) in cylindrical coordinates
with the z-axis through ^ and the origin at the groundplane. By separation
of variables we obtain u+ = Z(z-,Zs)R(r), where Z satisfies the hyperbolic
(second order) ODE and R satisfies the Bessel equation of order zero. When
this system is solved, the solution containing the Bessel function of the second
kind is rejected because of the boundary conditions. The Green's function can
then be written as a linear combination of the independent solutions as:

n
Jm=0

o(7m')r6" (6)

//i and //2 are determined by the boundary and additional conditions. Standard
numerical procedures then lead to the following result:

(7)

Here, the .<?„ and Zn can be interpreted as the image coefficients and positions,
respectively (Zauderer [8]). In particular, SQ = l/(47r/\) and ZQ = Zs, so that
the O'th term is the free-space solution %*. Equation (4) can be integrated either
analytically or numerically. Thus, Cs can be calculated by Equation (5).
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However, Cs is a full matrix which specifies a capacitance between ev-
ery pair of conductors. For our application, this corresponds to a circuit that
contains too much irrelevant detail since conductors that are far apart have a
negligible (although non-zero) capacitance. Moreover, computational complex-
ity would restrict the applicability of the method to situations without practical
significance.

Therefore, we calculate a reduced capacitance model with the so-called
hierarchical Schur algorithm. This algorithm produces an approximate positive
definite sparse inverse G^] for a positive definite matrix G that is specified
on a double band S. G$] has zeros on the complement of S and is the exact
inverse of the so-called maximum entropy extension of a matrix G' that is close
to G. It has been shown, see Nelis [7], that under certain conditions G$] is an
optimal reduced model

Thus, we compute a sparse approximation G^} of G~\ thereby in effect
ignoring small capacitances between conductors that are physically 'far' from
each other. The distance w, above which capacitances are ignored, is a parame-
ter of the method. This allows to trade detail of the model against computation
time.

The algorithm requires O(Nb'*) operations, where N is the number of
boundary elements and b is the average number of non-zero entries on a row
of G~̂ \. This latter quantity is determined by the average number of nearby
elements, which does not depend on the problem size but only on the window
size w and the mesh granularity. Consequently, the running time is in practice
proportional to the size of the problem.

Implementation and Results
The method as described above is implemented in an 1C verification program
called Space (van der Meijs [1]). From a layout description of a chip, Space
produces a circuit netlist that contains the interconnect capacitances as well as
the active devices and interconnect resistances.

Space incorporates all steps of the method in a single program that performs
one single pass over the input data. It reads a layout database and a file
containing the relevant technological data, and defines a window that is swept
over the layout. Within the window, the mesh is created, the collocation integral
is computed for all pairs of boundary elements within the window, the resulting
(partially specified) elastance matrix is inverted on the fly, and the approximate
inverse is multiplied by the the incidence matrix. The result is merged with the
network of active devices and interconnect resistances, and written to a netlist
database. This netlist is ready for simulation, e.g. with Spice (Quarles [10]).

To illustrate the efficiency of the program, consider a layout consisting of
two crossing busses of 5 wires each, see Figure 2. The lower conductors are
numbered 1-5 and the upper conductors are numbered 6-10. The thickness and
width of the conductors, as well as the horizontal and vertical separations are
all l//m. The medium consists of a single semi-infinite dielectric layer with a
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Figure 2: Crossing-bus example layout.

Table 1: Results as a function of the window size, on an HP
w

(//m)
11
5
4
3
2
1

time
(sec)
144.5
83.2
47.8
26.8
12.5
3.6

mem
(Mbyte)
14.74
4.14
2.10
0.78
032
0.14

Ci»
453.
462.
476.
499.
554.
645.

id
1
,5
.0
,0
.2
.4

capac

586.6
585.0
584.0
582.6
599.3
490.8

:itar

44
43
43
5

ices

3
3
.0
.0

"!"'

17.9
17.2
213

»F)

'•'15
12.3
11.9

Tu
144.
143,
143.
142
141
139

)
,6
,9
.4
.9
.4
.9

relative permittivity of 3.9 (SiOj). The boundary element mesh that is created
by Space consists of 460 elements of I/mi x l//m.

The results of extracting this layout when the window size w is varied, are
shown in Table 1. For w — 11/mi, they correspond to an exact inversion of the
elastance matrix. Note that when a capacitance dj vanishes, the corresponding
ground capacitance Ci^d increases so that the total capacitance of a conductor
changes very little. This will ensure accurate delay simulation, at the cost
of less crosstalk detail. Small values of w thus give acceptable capacitance
models, however, with much reduced memory use and CPU times.

Further results, including comparison to results obtained with other pro-
grams, can be found in van der Meijs [5].

3D SUBSTRATE RESISTANCE CALCULATIONS

The substrate of a VLSI chip may be seen as a multi-terminal distributed re-
sistance network between the contacts on the boundary of the substrate. These
contacts may be explicitly designed substrate contacts and e.g. substrate ter-
minals of (active) devices such as MOSFETs. Y = M is the desired indefinite
admittance matrix of this network.

Theory
We specify the Green's function by demanding homogeneous Neumann bound-
ary conditions on I\ and F-2 for the fundamental solution. The homogeneous
Neumann conditions and the divergence theorem require that the volume inte-
gral of the right-hand-side of Equation (3) equals 0. Therefore this equation
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has to be modified to

(8)

The last term can be seen as a sink, distributed over the volume l/#, with a
strength equal to the source at z%. The Green's function is obtained by the
operator technique (Zauderer [8]). The 3D function is expressed as a series
expansion in a basis of 2D eigenfunctions. For symmetry reasons we demand
that the function must be independent of the choice for the base directions (in
this case x and y). Then the Green's function is given by:

cos cos )̂cos(̂ )

C = { ggT Y +T̂ T7, 7,»»=< 0.5 rn = 0<*>n = 0 (9)
I 2LM/M ~ TW *

0
0.5

=n=0
= 0 (x) n = 0
, n = I, 2, ...

- -o) cosh \/Â Iz , 0 < z < Zo
T —-*- inn

The sink term in Equation (8) causes a new constant (unknown) term # to
appear in Equation (4). This term is the average potential over the domain. The
normal derivative of the potential is related to the current density through the
contacts by the local form of Ohm's law. To complete the set of equations, we
use the Kirchhoff current law, which states that the sum of all terminal currents
equals 0. Thus the indefinite admittance matrix of the substrate is given by
Y — F̂ Ĝ F. Here G+ results from the matrix —(l/K)G augmented such

that # is the (N + I)* unknown and the Kirchhoff current law is the (7V+ I)*
equation and multiplying by a diagonal matrix with the area of the elements as
entries. The incidence matrices are modified appropriately.

Results
The accuracy of the method in 2D situations has been established in Smedes [9].
Here we will focus on 3D results. The structure in Figure 3 is calculated without
and with the bottom contact. The resulting admittance matrices are shown as
G2a and G2b, respectively. Matrix G2a can be obtained from G2b by Gaussian
elimination. We verified that this relation holds for the numerical results, with a
maximum error of 0.3%. From the matrices one can see that a substrate contact
at the backside of a chip decreases the coupling between points at the surface.
In effect, it acts as a sink for the disturbances injected into the substrate.
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G2a=

G2b=

/ 4.88081
-2.40166

\-2.47916

: 5.82 148
-1.51529
-1.37397
-2.93223

-2.4078
5.57079
-3.163

-1.51848
6.4316
-2.0973
-2.81582

-2.47302
-3.16914
5.64215

-1.37216
-2.11119
6.98414
-3.50079

i

-2.93084
-2.80512
-3.51287
9.24884

Figure 3: 3D structure with calculated admittance matrices.

Figure 4 shows a structure which is typical for actual design problems.
The structure represents a 15 Hem epi-layer on a good conducting substrate
(p = 0.05 Hem). The outer top contacts are substrate contacts. Of the inner
contacts the right one represents the output (drain implant) of a digital oscil-
lator and the left one a sensitive node in an analog circuit. All top contacts
are 50/zm wide and 50/̂ m separated, except for the output contact, which is
10//m wide. Figure 5 shows results obtained by simulation of the calculated
substrate admittance matrix together with the external components with SPICE
(Quarles [10]). The simulations are repeated with one or more of the sub-
strate contacts in use. It is clearly seen that the addition of substrate contacts
decreases the parasitic coupling.

Rlead
Simulation data:
"in - 5V
I/bulk = -5V

= 100MHz

'Vbulk = lOnH

Figure 4: Example structure for substrate resistance calculations.

legend:
only right substrate

%__̂ ........ contact used
• right substrate contact

and bulk contact used
— both substrate contacts

-4.51

-5.0

-5.5-

-6.0-

-6.5

and bulk contact used

5.0 5.2 5.4 5.6 5.% 6.0
time (ns)

Figure 5: Results from SPICE of structure from Figure 4.
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CONCLUSIONS

This paper describes Boundary Element Methods applied to the calculation
of interconnection capacitances and substrate resistances for the verification
of VLSI designs. The methods use Green's functions tailored to the specific
problem, such that a simple integral formulation remains. This formulation is
transformed into the desired capacitance and admittance matrices. The approx-
imative inversion of the elastance matrix can be done with linear time com-
plexity with the Schur algorithm. We showed the applicability of the methods
by several examples.
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