Contents of natural radium-226 and lead-210 in foods produced within the Russian territory

N. K. Shandala, N. Ya. Novikova, A. V. Titov, A. A. Filonova & V. A. Seregin Burnasyan Federal Medical Biophysical Centre, Russia

Abstract

Dynamical examination of contents of the observed natural radionuclides in prime foodstuffs demonstrated their relative stability. Generally, ²¹⁰Pb and ²²⁶Ra specific activities in foodstuffs depend upon the food type and options of agriculture management. Many-year researches show that average specific activities of ²¹⁰Pb and ²²⁶Ra for different foodstuffs vary over the range 0.04-0.15 Bq/kg and 0.02-0.08 Bq/kg. Soil dependence of ²¹⁰Pb and ²²⁶Ra contents in foodstuffs has not been revealed. Taking into account the food patterns of the Russian population, the highest intake of ²¹⁰Pb and ²²⁶Ra is due to ingestion of bread, meat and drinking water. Annual effective internal doses are about 50 μ Sv/a.

Keywords: natural radionuclides, foodstuffs, doses, ingestion, intake.

1 Introduction

Natural radionuclides are present in all environmental media to a certain degree. Radionuclides of ²³⁸U and ²³²Th series, half-lives of which is comparable with the Earth age, and their progenies in significant amounts present in the environment and in the human body.

External exposure to the human is mainly due to gamma radiation of 238 U and 232 Th series, and 40 K.

Among radioactive ²³⁸U products, the most contribution into the natural background is due to ²²⁶Ra, its fission product ²²²Rn (radon) and long-lived products of ²¹⁰Pb and ²¹⁰Po decay, which precipitate on the surface of soil and make significant contribution into dose.

Behavior of radionuclides uranium and thorium series in the biological system is different. ²²⁶Ra and its radioactive products (²¹⁰Pb, ²¹⁰Po) have the most migration abilities among natural radionuclides in the chain soil – vegetations, while ²³⁸U and ²³²Th – the least.

Accumulation of natural radionuclides in the productive parts of crop (kern (corn), edible roots) is less than that in vegetative organs and roots.

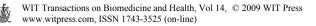
Some factors define accumulation of natural radionuclides by plants, the prime of which are their physical and chemical properties (5-38%), soil-climatic features of regions (22-47%) and biological special features of plants (38-48%) [6].

Cultivation of soil reduces significantly dependence of radionuclide intakes upon soil-climatic conditions and physical and chemical properties of radionuclides in the chain "soil – plants" and, hence, in foodstuffs.

So, ²¹⁰Po, ²¹⁰Pb and ²²⁶Ra are practically important for the purposes of radiation hygiene, because they are contained in vegetation, water, foods of animal and vegetable origin and, respectively, transferred into the human organism via foods [1–3].

Therefore, these radionuclides are the most informative (indicative, reference) in the course of the observation of the natural radionuclide contents in foods and internal dose assessment in the human organism. Nevertheless, monitoring is reasonable to be performed of long-lived ²²⁶Ra and ²¹⁰Pb.

2 Contents of natural radionuclides in foodstuffs


Analysis of ²¹⁰Pb and ²²⁶Ra contents in foodstuffs in Russia showed that there was no statistically valid difference in annual radionuclide contents.

Therefore, to assess ²¹⁰Pb and ²²⁶Ra contents in the prime foodstuffs we use the mean value for Russia, table 1.

The findings show that contents of natural radionuclides in foodstuffs depend upon the type of product and the spread of ²¹⁰Pb and ²²⁶Ra specific activities is rather wide and reaches an order of a magnitude.

To clarify dependence of natural radionuclide contents in foodstuffs on the soil type, data on natural radionuclide contents in foodstuffs were being joined into some groups according to the prevailing types of soil, typical for the Russian areas and regions under monitoring. Regardless identification of regions with soddy-podzolic and chernozem-chestnut soils, levels of ²¹⁰Pb and ²²⁶Ra contents in foodstuffs at which is higher a bit, than at boggy and podzolic soils, no statistically valid dependence of natural radionuclide contents in foods upon the soil type has been revealed.

Table 2 includes calculation results of ratio between ²¹⁰Pb and ²²⁶Ra specific activities in foodstuffs obtained using results of the Russian mean specific activities for these radionuclides in each of four Russian regions with different types of soil: soddy-podzolic, podzolic, boggy, and chernozem. On average, the ratio values by the soil types show satisfactory compliance with the mean Russian values, table 2.

Foods	²¹⁰ Pb	²²⁶ Ra		
Bread	0.10 0.01-0.67* (236)**	0.05 0.002-0.5 (229)		
Milk	0.05 0.01-0.35 (342)	0.02 0.001- 0.15 (312)		
Meat: beef	0.15 0.01-0.36 (5)	0.08 0.002-0.15 (6)		
Fish	< 0.01-0.44	0.03-0.25		
Potato	0.07 0.01-0.35 (143)	0.03 0.001- 0.3 (159)		
Cabbage	0.04 0.001-0.48 (96)	0.02 0.001-0.4 (120)		
Beet + Carrot	0.10 0.002-0.34 (38)	0.03 0.001-0.2 (29)		
Drinking water	0.04 0.001-0.2 (83)	0.02 0.001-0.36 (390)		
Note: *range	Note: *range of values; **number of samples.			

Mean ²¹⁰Pb and ²²⁶Ra contents in foodstuffs in Russia, Bg/kg [1]. Table 1.

Ration between ^{210}Pb and ^{226}Ra specific activities in foodstuffs in Russia, ^{210}Pb / ^{226}Ra (quotas). Table 2.

Foodstuff	²¹⁰ Pb/ ²²⁶ Ra on average over Russia	²¹⁰ Pb/ ²²⁶ Ra, mean value by the soil types
Bread	1.9	1.9
Milk	2.3	2.7
Potato	2.3	1.9
Vegetables	3.0	2.1
Fish	2.2	-
Meat	1.8	5.0

Generally, ²¹⁰Pb content is higher in all products (the ratio ²¹⁰Pb/²²⁶Ra values vary over the range from 1.0 to 9.0). Study of materials on ²¹⁰Pb and ²²⁶Ra contents in foodstuffs over different

years and at the areas with different types of soil allows further use the mean Russian data in calculation of intake and effective internal doses.

3 Consumption and intake of natural radionuclides via foodstuffs by the population of Russia

Analysis of food ingestion in the home economics (all households), according to data of the Federal state statistic service over the period 2003-2006 showed that the food ration of the Russian population remained stable in terms of mass of its component (particular foodstuffs) [4].

Data on per capita food intake by the Russian population [5] are used in assessment of internal doses due to radionuclide intakes via the food ration. In the course of analysis, the frame of food ration on the prime 7 food groups has been developed indicating their ingestion in kg/day units.

Table 3 deals with ingestion of the particular foodstuffs by the population of the Russian Federation (RF), both per capita intake and intake by urban and farm adults separately.

Foods	On average per capita	Urban citizen	Farm citizen
Bread and bread products	146.5	134.6	179.3
Milk and dairy	144.4	138.9	156.7
Potato	86.3	78.7	107.0
Vegetables and melons	83.9	83.3	85.6
Meat and meat products	60.7	62.8	55.0
Fish and fish products	14.2	14.3	13.9
Fruits and berries	35.3	37.8	29.3
Mushrooms	1.0	1.0	1.0
Drinking water	511.0	511.0	511.0

Table 3: Ingestion of particular foodstuffs by the RF population, kg/a.

Table 4: 210 Pb and 226 Ra intake by the population of Russia, Bq/a.

Foods	Per capita		Urban citizens		Farm citizens	
	²¹⁰ Pb	²²⁶ Ra	²¹⁰ Pb	²²⁶ Ra	²¹⁰ Pb	²²⁶ Ra
Bread	13.2	7.0	12.1	6.5	16.2	8.60
Milk	6.5	2.8	6.3	2.8	7.0	3.13
Potato	6.0	2.6	5.5	2.4	7.49	3.21
Vegetables and	5.3	2.1	5.2	2.1	5.39	2.14
melons						
Meat	9.1	4.9	9.4	5.2	8.25	4.51
Fish	2.1	1.0	2.2	1.0	2.1	1.0
Drinking water	17.9	8.7	17.9	8.7	17.9	8.7
Gross intake	60.2	29.2	58.6	28.5	64.3	31.2

As drinking water is important for uranium and radium series intake, it is included into intake assessment via the full ration, and the intake value of 1.4 l/day is accepted for all groups of population.

Data on natural radionuclide contents in foodstuffs (table 1) and on ingestion of the particular foods by the population of Russia (table 3) were used to calculate ²¹⁰Pb and ²²⁶Ra intake via foods per capita and for farm and urban population. Table 4 includes the calculated results. Here, ²¹⁰Pb and ²²⁶Ra contents in water are 0.035 and 0.017 Bq/l, respectively (table 1).

Table 4 shows that bread and drinking water have the highest ²¹⁰Pb and ²²⁶Ra intakes.

4 Doses induced by natural radionuclides

Table 5 show effective internal doses to the population of Russia due to 210 Pb and 226 Ra intake via the food ration.

With the purpose of comparison, tables 6 and 7 include intakes and doses induced by ¹³⁷Cs and ⁹⁰Sr. Mean ⁹⁰Sr and ¹³⁷Cs values for foods in Russia were used in calculations, table 8.

Table 5:	Effective internal doses induced by ²¹⁰ Pb and ²²⁶ Ra intaking by the
	RF population via foods, μ Sv/a.

Dose induced	On average to a	To urban citizen	To farm citizen
by	person		
²¹⁰ Pb	41.5	40.5	44.4
²²⁶ Ra	8.2	8.0	8.7
Total	49.7	48.5	53.1

Table 6:	³⁷ Cs and ⁹⁰ Sr intake by the population of Russia, Bo	q/a.
----------	--	------

Foods	On average to a		To urban citizen		To farm	
	perso				citiz	-
	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr	¹³⁷ Cs	⁹⁰ Sr
Bread	205.2	19.0	188.4	17.5	251.0	23.3
Milk	101.0	17.3	97.2	16.2	109.7	18.8
Potato	60.4	6.9	55.1	6.3	74.9	8.6
Vegetables and	2.5	7.6	2.5	7.5	2.6	7.7
melons						
Meat	18.2	3.6	18.8	3.8	16.5	3.3
Fish	2.6	10.9	2.8	11.0	2.5	10.7
Fruits and berries	1.4	4.2	1.5	4.5	1.8	3.5
Mushrooms	39.0	3.7	39.0	3.7	39.0	3.7
Dinking water	0.5	1.0	0.5	1.0	0.5	1.0
Gross intake	430.8	74.3	405.3	71.5	497.9	80.6

274 Environmental Health Risk V

Doses induced by ¹³⁷Cs and ⁹⁰Sr intaking by the RF population via Table 7: foods on average to a person, $\mu Sv/a$.

Dose induced	On average to a person	To urban citizen	To farm citizen
⁹⁰ Sr	2.1	2.0	2.3
¹³⁷ Cs	5.6	5.3	6.5
Total	7.7	7.3	8.8

Table 8:	Average ¹³⁷ Cs and ⁹⁰ Sr contents in foods in Russia, Bq/ kg, [1].
----------	--

Foods	¹³⁷ Cs	⁹⁰ Sr
Bread	1.4 ± 0.03	0.13 ± 0.03
Milk	0.7 ± 0.04	0.12 ± 0.01
Potato	0.7 ± 0.03	0.08 ± 0.01
Vegetables and	0.03 ± 0.01	0.09 ± 0.01
melons		
Meat	0.3 ± 0.03	0.06 ± 0.02
Fish	0.18 ± 0.03	0.77 ± 0.01
Fruits and garden	0.04 (0.10)*	0.12 (0.19)
berries		
Wild berries	18.0 (40.0)	0.33 (0.80)
Mushrooms	39.0 (270.0)	3.7 (36.0)
Drinking water	0.001	0.002
Note: * - in parenthe	ses – maximum value	

Table 9. Percentage contribution of the main dose-forming radionuclides into internal dose to the population of Russia, %.

Dose induced	On average to a	To urban citizen	To farm citizen
by	person		
²¹⁰ Pb	72.0	73.0	72.0
²²⁶ Ra	14.0	14.0	14.0
⁹⁰ Sr	4.0	4.0	4.0
¹³⁷ Cs	10.0	9.0	11.0
Total	100	100	100

Calculations show that internal doses due to intake of natural radionuclides via foods by the population of Russia can be assessed at the level of about 50 μ Sv/a. Here, effective internal dose induced by ²¹⁰Pb intake is 5 times higher than dose induced by 226 Ra. The mentioned values are about 6 times higher than effective doses due to 90 Sr and 137 Cs intakes via the food ration. Total dose induced by 90 Sr and 137 Cs varies from 7.3 μ Sv/a (to the ran citizen)

to 8.8 μ Sv/a (to the farm citizen).

Table 9 shows the percentage contribution of the main dose-forming radionuclides (natural and man-made) into internal dose to the population of Russia due to ingestion of foods.

Table 9 shows that quota of natural radionuclides in comparison with manmade radionuclide is much higher: the percentage contribution into gross ²¹⁰Pb and ²²⁶Ra dose is 72% and 14%, respectively.

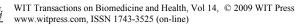
External exposure to the public [7] due to natural radionuclides containing in soil being calculated taking into account time of staying outdoors and in dwellings, is $350 \ \mu Sv/a$, which is 87,5% of gross internal and external dose (table 10).

Dose induced	On average to a	To urban citizen	To farm citizen
by	person		
²¹⁰ Pb	41.5	40.5	44.4
²²⁶ Ra	8.2	8.0	8.7
Total	49.7 (12.5%)	48.5 (14.5%)	53.1 (11.4%)
External due	350.0 (87.5%)	286.0 (85.5%)	414.0 (88.6%)
to natural			
radionuclides			
Internal +	399.7	334.5	467.1
external			

Table 10: Effective internal and external 210 Pb and 226 Ra induced doses to the population of Russia, μ Sv/a.

The mentioned data confirm that contribution of internal exposure due to natural radionuclides into total dose to the public of Russia is only 11-14% of gross internal and external dose, so, regulation of natural radionuclides in foods is unreasonable.

5 Conclusion


The majority of arguments found in the course of this work do not confirm the necessity of development of the particular numerical values of permissible specific activities of natural radionuclides for the prime types of foods. Doses due to internal exposure of natural radionuclides obtained in this work are about twice lower than average over-world data (50 μ Sv/a in comparison with 120 μ Sv/a).

Nevertheless, having in mind that doses due to internal exposure due to ²¹⁰Pb and ²²⁶Ra intakes are much high than those of man-made radionuclides (⁹⁰Sr and ¹³⁷Cs): percentage contribution into gross dose of ²¹⁰Pb and ²²⁶Ra is 72% and 14%, respectively, now, monitoring of natural radionuclide contents should be performed prime foods. Such kind of monitoring must be carried out within social hygienic monitoring, which is the prime mechanism regulating sanitary and epidemiological prosperity of the public, as well as within radiation hygienic certification of regions.

References

- [1] Sources and effects of ionizing radiation. UNSCEAR Report 2000. With scientific appendices. V.1 Sources. part.2. L A Ilyin and S P Yaroshenko editors. RADEKON: Moscow, 2002.
- [2] Alexakhin R M, Arkhipov N P, Barkhoudarov R M ea. *Heavy natural radionuclides in biosphere: migration and biological impact on populations and bio-geo-cenosis*, Nauka: Moscow, 1990.
- [3] Karpin V A, Kostryukova N K, Goudkov A B. Radiation exposure of radon and its daughter products to the human *//Hygiene and sanitary*, 4, p. 38-40, 2005.
- [4] Ingestion of foods from domestic husbandries over 2003. (according to outcomes of selective inspection of household budgets), Goscomstat of Russia: Moscow, 2004.
- [5] Assessment of individual effective doses to the public due to natural radiation sources. Methodic guidance 2.6.1.1088-02. Minzdrav of Russia: Moscow, p. 22, 2002.
- [6] Drichko V F. Environmental Behavior of Heavy Natural Radionuclides //Results of science and engineering. Radiation biology, 4, 1983.
- [7] Radiation safety assurance for the land-using (radiation and hygienic aspects), Federal Centre of Gossanepidnadzor at Minzdrav of Russia: Moscow, 2005.

