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Abstract 

The problem of estimation and prediction of a spatial stochastic process, 
observed at irregular locations in space, is considered. Geostatistical techniques 
analyze and describe the spatial dependence and quantify the scale and intensity 
of the spatial variation providing the essential spatial information for local 
estimation. Environmental variables usually show spatial dependence among 
observations, which is an important drawback to traditional statistical methods. 
The statistical model proposed is a Gaussian spatial linear mixed model 
(GSLMM) which introduces in the model various interesting terms under a 
hierarchical structure: a trend part, a lying signal spatial process derived through 
latent processes and a residual spatial term. Uncertainty in the model parameters 
can be evaluated using Bayesian statistical tools. The proposed methodology is 
applied to model the spatial process of rainfall erosivity in a Mediterranean 
region. 

1 Introduction 

A feature common to the earth sciences is the nature of their data. Most of the 
properties of interest vary continuously in space and cannot be measured or 
recorded everywhere. Thus, to represent their variation the values of individual 
variables or class types at unsampled locations must be estimated from 
information recorded at sample sites. The need to define spatial variation 
precisely is clear, and geostatistics is largely the application of this theory. It 
embraces a set of stochastic techniques that take into account both the random 
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and structured nature of spatial variables, the spatial distribution of sampling 
sites and the uniqueness of any spatial observation (Journel & Huijbregts 11 1, 
Goovaerts (21). Geostatistical methods find wide applications, for example in soil 
science, meteorology, hydrology and ecology. A methodological framework for 
dealing with problems of this kind was motivated by problems in the mining 
industry. 

An important tool in geostatistics is the kriging predictor. The term kriging 
refers to a least square linear predictor which, under certain stationarity 
assumptions, requires at least the knowledge of the covariance parameters and 
the functional form for the mean of the underlying random function. In practical 
grounds, the parameters are usually not known. The kriging predictor does not 
take their uncertainty into account, but uses plug-in estimates as if they were 
true. Bayesian inference provides a way to incorporate parameter uncertainty in 
the prediction by treating the parameters as random variables and integrating 
over the parameter space to obtain the predictive distribution of any quantity of  
interest (Ribeiro & Diggle, 13 I). 

The objectives of a geostatistical analysis are broadly of two kinds: estimation 
and prediction. Estimation refers to inference about the parameters of a 
stochastic model for the data. Prediction refers to inference about the realization 
of the unobserved signal S(u). 

2 Gaussian spatial linear mixed models 

2.1 Data structure 

Consider a finite set of spatial sample locations U, ,  id2, ..., U,, within a region D 
and denote u = (U,, U,, . . .,U,,) . Geostatistical data consist of measurements taken 

at the sample locations U. The data vector is denoted by y (U) = (y(11, ), . . . , y(u,)) , 
and the data are regarded as being a realization of a spatial stochastic process 
{Y(ii);u E D ) .  An arbitrary location is denoted by u and the region D is a fixed 

subset of '3id with positive d-dimensional volume. We assume that u varies 
continuously throughout the region D. 

2.2 A conditional model specification 

The model assumed here considers that the variable Y is a noisy version of a 
latent spatial process, the signal S(u). The noises are assumed to be Gaussian and 
conditionally independent given S(u). The model is specified by: 
(1) Covariates: the mean part of the model is described by the term X(ui)P. 

X(ii,)' denotes a vector of spatially referenced non-random variables at 

location l4i  and p is the mean parameter. 
(2) The underlying spatial process (S(u) : u E '3id ) is a stationary Gaussian 

process with zero mean, variance d and correlation function p(h; @), where 
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i$ is the correlation function parameter and h is the vector distance between 
two locations. 

(3) Conditional independence: the variables Y(uJ are assumed to be Gaussian 
and conditionally independent given the signal, 

2.3 A conditional model specification: a hierarchical structure 

In some applications we may want to consider a decomposition of the signal S(u) 
into a sum of latent processes Tk(u) scaled by 0: .  Then, the model can be 

rewritten in a first level as: 

In a second level T, (U) - N(0, R, ($, )) , TI, . . ., TK mutually independent and 

&(U) - ~ ( 0 . 7 ~ 1 ) .  Finally, level 3 defines the prior distribution for the 

parameters. 
The model components are: (a) Y(u) is a random vector related to the 

measurements at sample locations; (b) X(u)P = p(u)  is the expectation of Y(u). 

X(u) is a matrix of fixed covariates measured at sample locations U; (c) Tk(u) is a 
random vector at sample locations, of a standardized latent stationary spatial 
process Tk. It has zero mean, variance one and correlation matrix Rk($k). The 

signal S is defined by the sum of scaled latent processes S(u )  = xK o,T,(u) ; 
, = I  

(d) q is a scale parameter; (e) E(u) denotes a spatially independent process 
(spatial white noise) with zero mean and variance 8. 

3 Spatial prediction 

In geostatistical problems, often the main interest is not parameter estimation but 
prediction of the variable at a set of locations. Denote by Y(uo) (Yo) the variable 
to be predicted at locations uo. 

The optimal point predictor, defined as the one which minimizes the 
prediction mean square error (MSE), is given by 

This predictor is called the least .quares predictor- and its prediction variance 
is given by VarlYo l YI. Finding the conditional expectation (3) or an 
approximation to it, is a central problem in geostatistics, and several methods 
have been proposed. 
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3.1 Lineal predictor assuming known parameters 

The linear predictor which minimizes the MSE is called simple krigirzg (SK) 
predictor. The SK predictor requires knowledge of the mean and covariance 
parameters, i.e. the parameters of the trend, signal and noise should be provided. 
The SK predictor is of the form 

The weights Ai are such that the prediction MSE is minimum. Under the 
Gaussian model, and if all the parameters are known, the SK predictor coincides 
with the conditional expectation (3), and therefore is optimal. 

3.2 Lineal predictor filtering the mean and assuming known covariance 
parameters 

The ordinary kriging (OK) predictor filters a constant mean requiring only the 
knowledge of the covariance parameters. The OK predictor is of the form 

The weights hi are such that the prediction MSE is minimum under the 
constraint C&=]. This constraint ensures the unbiasedness of the estimator. The 
results provided by OK coincide with those obtained by SK with the scalar mean 
parameter p given by its generalized least squares estimator. 

3.3 A model-based approach 

If complete parametric specification for the model components is assumed the 
conditional expectation (3) can be assessed (Diggle et al. 141, Ribeiro & Diggle 
131). Consider, for example, the Gaussian model specified in (2) extended to 
include both Y and Yo. The joint distribution is given by 

4 Bayesian inference for a geostatistical model 

Let us focus now on parameter estimation and prediction results for a Bayesian 
analysis of geostatistical data. For this aim consider a simpler model than (2) 
defined as Y (U) = X(u)p + oT(u) ,  where T, - (N,  R,, ($)) and pr@, d, $), a 

prior distribution. 
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4.1 Uncertainty in the mean parameter 

In this case only the mean parameter p is unknown. The covariance parameters 
are known and the covariance matrix is written as v(a?,@,) = a,'R($*), and 

denoted by o : ~ .  The model considered here corresponds to the common 

situation in geostatistics where the mean is filtered and the covariance 
parameters are estimated by some method and plugged-in for predictions. 
The joint probability distribution for ( Y ,  Yo) is a simpler version of (6), without 
the nugget effect and with only one latent process 

and the associated marginal and conditional distributions are 

and 

4.1.1 Predictive distribution for a Conjugate prior 
Assuming a Normal prior for the mean parameter 

the mean and variance of the predictive distribution will be 

4.1.2 Predictive distribution for a Flat prior 
Assuming a flat prior for the mean parameter, i.e. p ( 8 )  1 , the mean and 
variance of the predictive distribution can be calculated from ( 1  1 )  and (12) with 
v,-' = o ,  
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Finally, the posterior for known mean parameter p can also be obtained from 
( l  l ) and ( l  2) considering Vg >> X 'R;' X or VD = 0 . 

5 Application to real data 

5.1 Introduction to the data set 

To evaluate the rainfall erosivity in the Mediterranean area, many parameters 
have been studied and the most famous is the R factor, the rain erosion 
agressivity, included in the Universal Soil Loss Equation (USLE). Here the 
importance of the R factor in soil erosion is the kinetic energy of each storm and 
its maximum intensity. Therefore, this factor follows the expression R = Ex130, 
where E is the total kinetic energy liberated in the rain, and 130 is the maximum 
intensity produced in the storm in 30 minutes. In Spain it is very difficult to get 
the values of the factor R because there are few observatories and they normally 
only analyze the rain in 24 hours, without information on the temporal series. To 
bypass this problem, several expressions were evaluated to calculate R as a 
function of the more common weather variables. In particular, for the 
Mediterranean area the following expression was adopted (Antolin et al., 151): 

R = 2.375G + O S  l 3PPex-94.4-8 lZl + Z ,  + 372, +84Z,, where P; is the 

maximum daily rainfall in a period of two years, P,,ex is the interannual mean of 
rainfall of the maximum rainfall month in the year, ZI is Zone 1 (the nearest zone 
to Grazalema), Z2 stands for Zone 2 (south of Spain and the Segura river basin), 
Z3 is Zone 3 (the rest of the Mediterranean area) and Zq is the Oriental Pirinean 
basin. This formula was applied using the weather values of 199 stations 
(observatories) and then, the maximum rainfall in 24 hours in a period of two 
years and the interannual mean rainfall in the most rainfall month were 
calculated in each station with the Gumbel method. In this paper we analyze 295 
spatial locations in the Province of Castellon (Spain) where the R factor together 
with elevation and distance to the sea were recorded. The aim is to build a 
statistical model to predict the rainfall erosivity all over the study region. 

5.2 Analysis of results and conclusions 

Figure 1 shows the spatial locations where the data was recorded together with 
the locations of the 41 automatic stations used to analyze the goodness-of-fit of 
the results. The spherical variogram model was fitted to the data using maximum 
likelihood. Note that the fitted variogram lies within the simulated variogram 
envelopes. Traditional simple kriging provided similar results in terms of 
prediction and standard errors than ordinary kriging (see Figure 2). To perform 
uncertainty in the model, we evaluated the model-based approach to analyze the 
parameter p. At a first step, let us suppose that there is no trend to evaluate the 
factor R. Figure 3 shows the estimates given by traditional OK and model-based 
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approach for the 41 automatic stations. Both procedures do not predict quite well 
the extreme cases, which could be due to the fact that a trend model should be 
considered. Then, in a further step, we evaluated the trend by means of linear and 
loess models that predict factor R from distance to the sea and elevation. Figure 4 
shows the estimates given by both approaches for the automatic stations. There 
are slightly differences between both methods but in any case when using a trend 
model, the results seem to improve. 

Sampled locations with data Automatic stations 

eastings easllngs 

0 1 M 0 0  3WM 5W00 OIOWO m 0  m 0  

Distance Dlstance 

Figure 1: Sampled locations in the study region (left) and locations for 41 
automatic stations (right). Estimated variograms and envelopes. 

WOO 720WO 760390 801 
SK standard enors 

OK prediCtlm(1 OK standard errors 

Figure 2: Kriged R factor using SK and OK methods and corresponding standard 
errors (s.e.). 
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Figure 3: Prediction of R at the automatic stations using traditional OK and a 
Bayesian approach with a flat prior for parameter 0. 

Figure 4: Prediction of R at the automatic stations using a Bayesian approach 
with a flat prior for parameter p with trend evaluated under linear and 
loess models. 
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