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Abstract 

We simplify a two-phase theory proposed by Berzi and Jenkins for the uniform 
motion of a granular-fluid mixture to obtain explicit, analytical relations between 
the tangent of the angle of inclination of the free surface, the average particle 
(fluid) velocity and the particle (fluid) depth. Those expressions, valid, in 
principle, only in uniform flow conditions, can then be employed to express the 
motion resistance for the particles and the fluid in mathematical models of  
non-uniform flow, as customary in Hydraulics. The advantages of those formulas 
with regard to previous, widely employed expressions are also discussed.  
Keywords: rheology, uniform flow, friction slope. 

1 Introduction 

Recently, Berzi and Jenkins [1–3] proposed a simple theory based on a linear 
rheology for the particle interactions, turbulent shearing of the fluid, buoyancy, 
and drag. They provided a complete analytical description of the steady, uniform 
flow of a granular-fluid mixture (debris flow) over an inclined bed contained 
between frictional sidewalls. In order to obtain such analytical solution, they 
assumed a constant concentration in the particle-fluid mixture and the similarity 
of the particle and fluid velocity profiles. The predictions of this description 
compared favourably with the measurements in experiments on steady, uniform 
granular-fluid flows performed by Armanini et al. [4] and Larcher et al. [5] on 
mono-dispersed plastic cylinders and water. As seen in the experiments, the 
particle and fluid velocity distributions, the flow depths, and the free surface 
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inclination were completely determined by the particle and fluid volume fluxes. 
Here, we simplify the theory of Berzi and Jenkins [1–3] by neglecting the 
turbulent shear stress in the mixture and the presence of the sidewalls. We can 
therefore obtain explicit relations between the average particle velocity, the 
depth and the tangent of the angle of inclination of free surface and between the 
average fluid velocity, the depth and the tangent of the angle of inclination of 
free surface. Those relations can then be used as analytical expressions of the 
motion resistance encountered by the particles and the fluid, respectively, in a 
debris flow, by interpreting the angle of inclination of the free surface as the so 
called friction slope. 
     The paper is organized as follows: first, we briefly recall the theory of Berzi 
and Jenkins [1–3]; then, we derive simplified expressions for the friction slopes 
and, finally, discuss them in comparison with other well-known formulas. 

2 Theory 

We let  denote the fluid mass density, c the particle concentration, g the 
gravitational acceleration,  the particle specific mass, d the particle diameter,  
the fluid viscosity, U the fluid velocity, and u the particle velocity. The Reynolds 
number R = d(gd)1/2/ characterizes the fall velocity of the particles. In what 
follows, we phrase the momentum balances and constitutive relations in terms of 
dimensionless variables, with lengths made dimensionless by d, velocities by 
(gd)1/2, and stresses by gd. 
     We take z = 0 to be the top of the grains, z = h to be the position of the rigid 
bed, and H to be the height of the water above a bed of inclination . The degree 
of saturation,  = H/h, is greater than unity in the over-saturated case and less 
than unity in the under-saturated. Sketches of over- and under-saturated flows are 
depicted in figure 1, together with a generic velocity profile for the particles. 
     We assume that it is possible to apply the rheology proposed by the French 
group GDR MiDi [6]. This rheology provides the particle stress ratio /s p   

and the concentration c as unique functions of the inertial parameter  
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Figure 1: Sketch of steady, (a) over- and (b) under-saturated, uniform flows 
over rigid beds. 
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 1/ 2
/ /I p c  , where s is the particle shear stress, p the particle effective 

pressure and   is the strain rate. In this case, u   ; where here, and in what 

follows, a prime indicates a derivative with respect to z. 
     We consider highly concentrated flows, in which the functions are 
approximately linear [7], 
 
 I     (1) 
 
and c c bI  , where   and c


 are the minimum stress ratio and the maximum 

concentration, respectively, and  and b are material coefficients. The quantities 
  and c


 characterize both the bed and the plug, at which I = 0;   is the 

tangent of the angle of repose and c


 is the concentration at dense, random 
packing. 
     The balances of fluid momentum transverse and parallel to the flow, in the 
region in which both phases are present, are 
 
 cos /P    , (2) 
 
and 
 
    1 sin / / ,' c cC U uS       (3) 

 
respectively, where P is the fluid pressure, S the fluid shear stress, and C is the 
dimensionless drag, 
 

    3.1
/10 18.3 / / 1 ,3C U u R c     (4) 

 
derived by Dallavalle [8], with the concentration dependence suggested by 
Richardson and Zaki [9]. When an upper clear fluid layer is present, the 
distribution of the fluid shear stress can be obtained from eqn. (3) with c = 0. 
The balances of particle momentum transverse and parallel to the flow are 
 
  1 1/ cosp c    , (5) 

 
and 
  
  sin /s c cC U u     , (6) 

 
respectively. The balances for the particles when an upper dry layer is present 
can be obtained from eqns. (5) and (6) by letting  become infinite. 
     Here, in the mixture, we ignore the turbulent shear stress in the fluid relative 
to gravity and drag and neglect the friction of the sidewalls. In the clear fluid 
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layer, we assume that the turbulent mixing length is proportional to the thickness 
of the layer: 
 2 2( ) ,S k H h U U     (7) 

 
where k = 0.20, half the value of Karman’s constant. We also assume that the 
concentration is approximately constant and at its maximum value, c c  . 
With these assumptions, and considering the surface at z = 0 as free of particle 
stress, it is possible to obtain the particle stress ratio, , as a function of z from 
the momentum balances (2), (3), (5) and (6): 
 

 
   

   
*1 1 /

tan
1 1 cos

z c z h c S

z z h z z h c

   
    

      
       

 
  (8) 

 
(for details of this derivation, see [2]), where /H h   in an under-saturated 

flow and unity otherwise; and * ( 1)sin /S h      is the fluid shear stress at 

the top of the particles, where /H h   in an over-saturated flow and unity 

otherwise. 

2.1 Particles 

In the upper dry layer,  is constant and equal to tan (from eqn. 9, with  equal 
to infinity). Given the linear rheology (1), in the under-saturated flows, the upper 
dry layer is either totally sheared, when tan   , or there is a plug in the 

region 0z   . The location  of the base of the plug can be found from 

eqn. (8), with     and S* = 0: 

 

 
   
  
1 tan 1

1 tan tan

    
  

  
 

c c

h c

  
   

. (9) 

 
     For reasonable values of tan, eqn. (9) can be approximated by / 1h   . 

In this case, the average particle velocity along h is simply equal to 
 
  1A m dryu u u    , (10) 

 
where um is the mean particle velocity in the mixture layer and udry the mean 
particle velocity in the dry layer. The quantity um can be obtained once known 
the velocity distribution in the mixture layer. The latter can be obtained using 

eqn. (1) in eqn. (9), with   1/ 2
/ 1 (1 ) cosI u z h          , and 

integrating: 
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  
     

     

1/ 2

1/ 2

1/ 2

2
3 /

31 1/

2
3 / ,

3

z Lu
A z L N A L

h L
A h L N A L






       


      

 (11) 

where    1 / tan / 1A c c         
  

,    1 / 1L h     , and 

     1 tan / 1 tan /N c c L h c c            
    

. In obtaining eqn. (11), 

we have assumed a mild slope, so that cos 1  , and a zero slip velocity at the 
bed. It is then possible to obtain um by integrating eqn. (11) between (1-)h and 
h: 
 
 

   

 

1/ 2 3/ 2 5/ 2 5/ 23/ 2
5/ 2

1/ 2

1/ 2 3/ 2 3/ 2
3/ 2

12 2 2
1

3 1 5 1 5 1

3 2 2 1
1 1 1

1
.

1

m

h
u A

N
A

h

       
    

     
  




                            
                         

      

 (12) 

 
     If, in the upper dry layer, there is a plug ( tan   ), its velocity is equal to 

the velocity u at the top of the mixture. If the upper dry layer is sheared 
( tan   ), from eqn. (1) and the fact that, in the dry layer, tan   and 

1/ 2/I u z  , the velocity there is equal to 
 

  3/ 2 3 / 22 tan

3
u u z

  



  


. (13) 

 
     The quantity (1-)udry is, then, equal to  
 

  
 

     
3/ 2

5 / 2

1 tan

1 2
1 1 tan tan

5
dry

u if

u h
u if





  


     


 
  

    




  , (14) 

 
where u can be obtained from eqn. (11) with z = (1-)h. With this and eqns. (12) 
and (14), eqn. (10) may be written as 
 

 1 23/ 2
tanAu

h
    , (15) 
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where the coefficients 1 and 2 are functions of the type of fluid and granular 
material (through ,    and c


) and the degree of saturation (through  and ); 

expressions for them are given in table 1. In uniform flows, the friction slope is 
equal to the tangent of the angle of inclination of the free surface. An expression 
for the friction slope, j, for the particles to be used also in non-uniform flows, 
can, therefore, be obtained from eqn. (15), with j = tan, 
 

 2
3 / 2

1 1

1 Au
j

h


 

  . (16) 

 

Table 1:  Values of the coefficients in the flow rule for the particles 
(eqn. (15)). 

1 when 
tan    

 
        

            

3/ 2 5/ 23/ 2
31/ 2

1/ 2 3/ 21/ 2

2
3 5 2 3 5 1 1

15 1

5 3 2 3 1 1 1 1

c c
c

       
  

          

         

              

 
  

1 when 
tan    

 
       

          

    

3/ 2 5 / 23 / 2
31/ 2

1/ 2 3/ 21/ 2

3 5 / 21/ 2

2
3 5 2 3 5 1 1

15 1

5 3 2 3 1 1 1 1

3 1 1

c c
c

c

       
  

          

  

         

              

  

 




 

2 when 
tan     

     3 / 2 5 / 23 / 2
21/ 2

2
3 5 2 3 5 1

15 1
       

 
       

  

2 when 
tan   

 
     

   

3 / 2 5 / 23 / 2
21/ 2

2 5 / 21/ 2

2
3 5 2 3 5 1

15 1

3 1 1

      
 

   

      

   


 

2.2 Fluid 

The average fluid velocity along H is equal to 
 

 
   

 
1 1

1 1
m cm

A

c U U
U

c

 
 
  


  


 , (17) 

 
where Um and Ucm are the mean fluid velocities in the mixture and in the upper 
clear fluid layer, respectively. Berzi and Jenkins [1, 2] have shown that the 
calculated difference between the fluid and the particle velocity is rather small 
(however, this does not permit the neglect of the drag force in the momentum 
balances (3) and (6), given the high values of the drag coefficient C). We can, 
therefore, assume that Um  um.  
     The mean fluid velocity in the upper clear fluid layer can be obtained from 
the integration of the distribution of the fluid velocity there; the latter comes 
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from the integration of eqn. (7), with the distribution of the fluid shear stress 
provided by eqn. (3) when c = 0. Hence, 
 

        
3 / 2

1/ 21/ 2
0

2 1
1 1 tan

5cmU U h
k


  


    , (18) 

 
where U0 is the fluid velocity at the base of the upper clear fluid layer, which can 
be obtained from eqn. (11) with z = 0. With this and eqns. (12) and (18), 
eqn. (17) reads 
 

  1/ 23
1 23/ 2

tan tanAU

HH
 


    , (19) 

 
where 1, 2 and 3 are functions of the type of fluid and granular material 
(through ,    and c


), the mixing length (through k), and the degree of 

saturation (through  and ), and their expressions are given in table 2. Once 
again, in uniform flows, the friction slope is equal to the tangent of the angle of 
inclination of the free surface. An expression for the friction slope, J, for the 
fluid, to be used also in non-uniform flows, can, therefore, be obtained from 
eqn. (19), with J = tan, 
 

 
 

21/ 2
2 2 1/ 2

3 3 1 2

1

4

2

AH U H
J

H

              

. (20) 

3 Discussion 

We have simplified the theory proposed by Berzi and Jenkins [1–3] to obtain 
explicit relations between the tangent of the angle of inclination of the free  
 

Table 2:  Values of the coefficients in the flow rule for the fluid (eqn. (19)). 


1 

 
   

    
     

         

    

3/ 2 5 / 25 / 2
33/ 2 1/ 2

5 / 2

1/ 2 3 / 23 / 2

2 5 / 2

2 1
5 3 2 2 1

15 1 1 1

5 1 1 1

5 3 2 2 1 1 1 1

15 1 1

c

c c

c c

      
     

  

          

 

           
    

             

  



 

   


2

 
   

       3/ 2 5 / 2 5 / 25 / 2
23/ 2 1/ 2

2 1
5 3 2 2 1 5 1

15 1 1 1

c

c
       

    

             




 


3 

 
 

3/ 2

1/ 2

2 1

5 1 1k c


  



    

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surface, the depth and the average particle velocity and between the tangent of 
the angle of inclination of the free surface, the depth and the average fluid 
velocity. Those two relations are the flow rules for the particles and the fluid, 
respectively, if one interprets the tangent of the angle of inclination of the free 
surface as the friction slope.  
     The fact that the friction slope for the particles has a different expression from 
that for the fluid is crucial to the expression of the resistances in two-phase, 
depth-averaged, mathematical models of non-uniform flows (see, for example, 
the steady granular-fluid wave over a rigid bed analysed in [3]). Most previous 
works either treat the mixture as a single phase fluid [10–14] or, although aware 
of the differences between the two phases, focus solely on the particle motion 
resistance [15, 16].  
     Existing models for the motion resistance of debris flows can be basically 
grouped in the four categories described in the following (although there are 
examples of resistance formula obtained by combining the characteristics of two 
categories, e.g. see [17]); however, all of them suffer from major drawbacks with 
respect to the formulas presented here.  
     Takahashi [15] obtains an expression for the resistance of over-saturated 
debris flows, based on a modified version of the dilatant model for the particle 
shear stresses in the inertial regime described by Bagnold [18] using kinetic 
arguments. Certainly, the merits of Takahashi expression were his taking into 
account the dependence of the stress ratio on the particle concentration and his 
incorporation of the effects of the fluid turbulence. However, his theory was 
incomplete, because it did not deal with under-saturated debris flows and 
because he characterized the particles only through their density. 
     Some authors [16, 19] suggest the use of Coulomb’s law to express the 
friction at the base of a debris flow. However, Coulomb’s law cannot explain the 
experimentally observed dependence of the friction slope on the average velocity 
and the depth [20], given that it implies a constant stress ratio at the bed. In the 
theory of Berzi and Jenkins [1–3], the stress ratio at the bed depends on the local 
inertial parameter, i.e. the velocity gradient. 
     Many authors employ some kind of non-Newtonian rheology for modelling 
the debris flow resistance [10–14]. This approach implies that the debris flow 
can be approximated as a single-phase fluid. This, perhaps, applies when the 
solid phase is composed mainly of fine sediments (e.g. for mud flows, see [4] for 
more details) - that is, when the inertia of the particles is negligible with respect 
to the fluid viscous forces; but not when the content of large particles is relevant 
(as for stony debris flows, see [4]). The assumed non-Newtonian behaviour of 
the debris flow is, moreover, entirely phenomenological and, therefore, not well 
physically-based. Although the GDR MiDi rheology adopted here might also 
seem phenomenological, its physical link with the particle interactions at the 
micromechanical level has been demonstrated [21]. 
     Finally, a few authors [14, 17] employ empirical expressions for the friction 
slope based on that for purely turbulent fluids (the Manning equation). These are 
not physically based and there are no rational arguments to justify their usage. 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 67, © 2010 WIT Press

48  Monitoring, Simulation, Prevention and Remediation of Dense and Debris Flows III



     The formulas for the motion resistance of particles and fluid in debris flows 
proposed in the present work seem promising for practical application in the 
field of civil engineering. 
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