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Abstract 

To predict flood and debris flow dynamics a numerical model, based on 1D De 
Saint Venant (SV) equations, modified for including erosion/deposition 
processes along the path, was developed. The McCormack–Jameson shock 
capturing scheme was employed for the solution of the equations, written in a 
conservative law form. This technique was applied to determine both the 
propagation and the profile of a two-phase debris flow resulting from the 
instantaneous and complete collapse of a storage dam. To validate the model, 
comparisons have been made between its predictions and laboratory tests 
concerning flows of water and homogeneous granular mixtures in a uniform 
geometry flume reproducing dam-break waves. Agreements between 
computational and experimental results are considered very satisfactory for 
mature (non-stratified) debris flows, which embrace most real cases. To better 
predict immature (stratified) flows, the model was improved in order to feature, 
in a more realistic way, the distribution of the particles of different size within 
the mixture. The level of maturity of the flow is assessed by an empirical, yet 
experimental based, criterion. The model, at this stage, should be able to predict 
the whole debris flow phenomenon, i.e. the triggering, mobilising and stopping 
processes of both mature and immature debris flows in different dam-break 
conditions. On the whole, the model proposed can easily be extended to channels 
with arbitrary cross sections for debris flow routing, as well as for solving 
problems of unsteady flow in open channels by incorporating the appropriate 
initial and boundary conditions. The model could also be improved to predict 
and assess the propagation and stoppage processes of debris and hyper-
concentrated flows in mountainous catchments and river basins, triggered by 
extreme hydrological events, once validated on the basis of field data. 
Keywords: debris flow, dam-break, two-phase modelling, mature and immature 
mixtures. 
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1 Introduction 

In this paper a 1D two-phase model for debris flow propagation is proposed. SV 
equations, modified for including erosion / deposition processes along the 
mixture path, are used for expressing conservation of mass and momentum for 
the two phases of the mixture. The scheme is validated for dam-break problems 
comparing numerical results with experimental data. Comparisons are made 
between both wave depths and front propagation velocities obtained respectively 
on the basis of laboratory tests and with predictions from the numerical model 
proposed by McCormack [18] and Jameson [13]. 
     In order to analyze stratified (immature) flow – the solid/liquid mixture is 
present in the lower layer, while only water is present in the upper one – the 
model has been improved by taking into account mass and momentum 
conservation equations for each phase and layer. Momentum conservation 
equations describe energy exchanges between the two phases in the same layer 
and between layers, while mass conservation equations describe mass exchange 
layers [16, 17]. 

2 Theoretical approach 

Debris flow resulting from flash floods such as a sudden collapse of a dam (dam-
break) are often characterised by the formation of shock waves caused by many 
factors such as valley contractions, irregular bed slope and non-zero tailwater 
depth. It is commonly accepted that a mathematical description of these 
phenomena can be accomplished by means of 1D SV equations [2, 4, 5]. 
     Numerical treatments of such equations, generally, require schemes capable 
of preserving discontinuities, possibly without any special shift (shock-capturing 
schemes). Most numerical approaches have been developed in the last two or 
three decades, that include the use of finite differences, finite elements or 
discrete/distinct element methods [1, 19]. 

2.1 Governing equations 

The 1D approach for unsteady debris flow triggered by dam-break is governed 
by the SV equations. This set of partial differential equations describes a system 
of hyperbolic conservation laws with source term (S) and can be written in 
compact vector form: 
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with A(s,t): wetted cross-sectional area; Q(s,t): flow rate; s: spatial coordinate; t: 
temporal coordinate; g: acceleration due to gravity; i: bed slope; Si: bed 
resistance term or friction slope, that can be modelled using different rheological 
laws [19]. 
     The pressure force integrals I1 and I2 are calculated in accordance with the 
geometrical properties of the channel. I1 represents a hydrostatic pressure form 
term and I2 represents the pressure forces due to the longitudinal width variation, 
expressed as: 

( ) ( ) ηηση dsHI
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where H: water depth; η : integration variable indicating distance from the 
channel bottom; ( )ησ ,s :channel width at distance η  from the channel bed, 
expressed as: 
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     To take into account erosion/deposition processes along the debris flow 
propagation path, which are directly related to both the variation of the mixture 
density and the temporal evolution of the channel bed, a mass conservation 
equation for the solid phase and a erosion/deposition model have been 
introduced in the SV approach. Defining the sediment discharge as: 

( ) BEtsq ⋅=,                                                  (4) 
with E: erosion/deposition rate; B: wetted bed width, the modified vector form of 
the SV equations can be expressed as follows: 

SFV
=

∂
∂

+
∂
∂

st
                                   (5) 

where: 

















⋅
=

Ac
Q
A

s

V  


















⋅

⋅+=

Qc

Ig
A

Q
Q

s

1

2
F  

( )
( )

















⋅⋅
⋅+−⋅=

BcE
IgSiAg

tsq

i

*

2

,
S  

with cs: volumetric solid concentration in the mixture; c*: bed volumetric solid 
concentration. 

2.2 Two phase mathematical model 

In the present work granular and liquid phases are considered. The model 
includes two mass and momentum balance equations for both the liquid and 
solid phases respectively. The interaction between phases is simulated according 
to the Wan and Wang [21] hypothesis. The system is completed with equations 
to estimate erosion / deposition rate derived from the Egashira and Ashida [7] 
relationship and by the assumption of the Mohr and Coulomb failure criterion for 
non cohesive materials. 
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2.2.1 Mass and momentum equations for the liquid phase 
Mass and momentum equations for water can be expressed in conservative form 
as: 
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with ( )tsQl , : flow discharge; cl: volumetric concentration of water in the 
mixture; β : momentum correction coefficient that we will assume to take the 
value 1=β  from now on; J: slope of the energy line according to Chézy’s 
formula; i: bed slope; F: friction force between the two phases. 
     According to Wan and Wang [21], the interaction of the phases at single 
granule level f is given by: 
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with cD: drag coefficient; vl: velocity of water; vs: velocity of the solid phase; d50: 
mean diameter of the coarse particle; lρ : liquid density. 
     Assuming grains of spherical shape and defining the control volume of the 
mixture as: 

dsHBdsHBVc ⋅⋅≈⋅⋅⋅= ϑcos                                 (9) 
with ϑ  channel slope angle, which holds for low channel slopes, the whole 
friction force F between the two phases for the control volume can be written as: 
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2.2.2 Mass and momentum equations for the solid phase 
Mass and momentum conservation equations for the solid phase of the mixture 
can be expressed as: 
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with ( )tsQs , : discharge of the solid rate; sρ : solid phase density. 
     According to Ghilardi et at. [10] and to Egashira and Ashida [7], the bed 
volumetric solid concentration c* was assumed to be constant and the erosion 
velocity rate E a function of the mixture velocity U: 

( )efE tgkUE ϑϑ −⋅⋅=                                      (13) 
with kE: coefficient equal to 0.1 according to experimental data [7, 10–12]. 
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     Positive or negative values of E correspond to granular material erosion or 
deposition, respectively. 
      fϑ  and eϑ  represent the energy line and the bed equilibrium angles, 
respectively, expressed as [6]: 
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where the debris flow density is defined as: 
( ) lsls c ρρρρ +⋅−=                                (16) 

and φ  is the static internal friction angle. U is defined as follows: 

llss vcvcU +=                                          (17) 

     For J the Takahashi [20] equation has been chosen, according to the dilatant 
fluid hypothesis developed by Bagnold [3]: 
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with Si: friction term and R: hydraulic radius given by: 

P
AR =                                             (19) 

where P is the wetted perimeter. 
     The quantity λ  (linear concentration) depends on the granulometry of the 
solids in the form: 
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where cm: maximum packing volume fraction (for perfect spheres cm = 0.74); ab: 
empirical constant. 
     With regard to the momentum conservation equation (12) all its terms have 
been evaluated considering only the fraction of volume actually occupied by 
grains and ignoring the erosion/deposition velocity. 

3 Experimental results and model calibration 

To validate the model, comparisons have been made between its predictions and 
experimental results carried out in the Hydraulic Laboratory of the Politecnico di 
Milano. Numerical solutions of the SV equations are based on the well-known 
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McCormack–Jameson predictor-corrector finite difference scheme ([13, 18]). 
The tests were performed with flows of water and homogeneous granular 
mixtures in a uniform geometry flume reproducing dam-break waves ([14, 15]). 
The experimental set-up consisted of a loading tank (dimensions 0.5 m x 0.5 m x 
0.9 m) with a downstream wall made of sluice gate, a pneumatic control device 
and a very short opening time (0.3 s).  
     The mixture flowed in a 6 m long channel of square section (0.5 m x 0.5 m) 
and adjustable slope. To enable camera recordings, one of the flume lateral walls 
contained glass windows. 
     Experimental tests were performed by changing the channel slope, the bottom 
roughness (smooth bottom made of galvanised plate or rough bottom covered with 
an homogeneous layer of gravel, with d50 = 0.005 m), the solid material 
characteristics (vedril: 31168 mkg=ρ , d50 = 0.003 m; or gravel: 

32621 mkg=ρ  d50 = 0.005 m) and the volumetric concentration of the mixture. 
     Recordings were made with a Sony Digital Handcam, model DCR-TRV32 E 
camera, which had an acquisition velocity of 25 frames per second, and were 
electronically elaborated.  
     To take into account different behaviours of the flow, the experimental data 
have been compared with the predictions of three rheological laws included in 
the one phase model (called “Water”, “Fix Bagnold” and “Mobile Bagnold”) and 
with those of the two phase model. 
     Comparisons show good agreement on the general shape that includes a steep 
front immediately followed by the maximum wave height and a decrease in flow 
depths down to an asymptotic value reached at the stoppage (figures 1 and 2).  
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Figure 1: Debris flow wave in some characteristic sections of the 
experimental channel. Comparison between mathematical model 
and experimental results. Water-gravel, abs 200, conc. 40%, slope 
15°, smooth bottom. 
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Figure 2: Debris flow wave in some characteristic sections of the 
experimental channel. Comparison between mathematical model 
and experimental results. Water-gravel, abs 140, conc. 40%, slope 
20°, smooth bottom. 

4 Further development of the model 

One of the main features of this paper is to present a two-phase mathematical 
model, based on the SV equations, suitable to describe the propagation and the 
profile of debris flow resulting from flash floods such as a sudden collapse of a 
dam (dam-break). Such an approach has been validated on the ground of 
laboratory tests, for mature (non-stratified) debris flow. This evidently puts the 
bases for future research activity and the challenge is to make the tool able to 
reach, with regard to stratified (immature) flows, the same reliability up to now 
achieved for the mature ones. 

4.1 Stratified (immature) flows 

Debris flows are categorized as stratified or immature whenever the solid/liquid 
mixture is present in the lower layer, while only the water is present in the upper 
one (figure 3). 
     Assuming hmx and hcw as the depths of the mixture and of the clear water 
respectively, the total depth of the debris flow hdf is equal to: 

hdf = hmx + hcw                                      (21) 
while the maturity degree is assessed as the ratio: 

df
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     Larcan et al [15] has suggested – on the basis of laboratory experiments – to 
distinguish mature and immature debris flow by means of a criterion based on 
mixture velocity and concentration (figure 4). 
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Figure 3: Scheme of the immature (stratified) debris flow. 
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Figure 4: Characteristics of mature and immature debris flows. 

     The figure underlines the effectiveness of the above mentioned criterion and 
depicts a boundary between mature and immature debris flow. The boundary can 
be expressed by: 
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with Fr: Froude number, while the maturity degree can be assessed as: 

boundarys

effectives
m C

C
d =                                         (24) 

     The experimental tests showed that in the first phase the flow is stratified; 
then, usually, it becomes mature, because the velocities and the concentrations 
are quite high. Finally, the tail of the wave is characterised by low velocities, due 
to the fact that the solid phase tends to deposit, and thus the flow becomes again 
stratified. 

4.2 Mass and momentum equations for the liquid phase-higher layer (cw) 

Mass and momentum equations for clear water can be expressed in conservative 
form as: 
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     The resistance term Jcw can be assessed on the basis of bank shear stress, 
while the slope of the energy line, Jtwo layers, due to the lower layer, according to 
Chézy’s formula, is expressed as: 
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being n the Manning’s number and Vmx the velocity of the lower layer. The drag 
force Ttwo layers between the higher layer and the lower one, can be expressed as: 

layerstwocwlayerstwo JAgT ⋅⋅=                         (28) 

4.3 Mass and momentum equations for the liquid phase-lower layer (mx) 

In the same ways as (6) and (7), these equations can be expressed as: 
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     Ttwo layers is opposite in sign with respect to (28) due to the fact that the higher 
layer, with greater velocities, exerts a drag force to the mixture. 

4.4 Mass and momentum equations for the solid phase-lower layer 

Likewise (11) and (12), mass and momentum equations can be expressed as: 
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4.5 Numerical model 

The SV equations for 1D two-phase unsteady debris flow can be expressed in 
compact vector form as follows: 
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     Numerical treatments of such equations, generally, require schemes capable 
of preserving discontinuities, possibly without any special shift (shock-capturing 
schemes). Most numerical approaches have been developed in the last two or 
three decades, that include the use of finite differences, finite elements or 
discrete/distinct element methods [1, 19]. 
     The McCormack predictor-corrector explicit scheme is widely used for 
solving dam-break problems, due to the fact that it is a shock-capturing 
technique, with second order accuracy both in time and in space, and that the 
artificial dissipation terms, the so-called Total Variation Diminishing (TVD) 
Lax–Wendroff correction, can be introduced, in order to avoid non-physical 
shocks and oscillations around discontinuities [8, 9]. 
     The main disadvantage of this solver regards the restriction to the time step 
size in order to satisfy Courant–Friedrichs–Lewy (CFL) stability condition. 
However, this is not a real problem for dam-break debris flow phenomena that 
require short time step to describe the evolution of the discharge. 
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     Whatsoever the solver adopted, at each timestep the degree of maturity has to 
be assessed, in order to choose the appropriate terms to incorporate in the SV 
equations. 

5 Conclusions 

Achieving a set of debris flow constitutive equations is a task which has been 
given particular attention by the scientific community during the second half of 
the last century. 
     In this context, the present paper describes the main features and 
characteristics of a numerical model suitable to solve the SV equations, modified 
for including two-phase debris flow phenomena, and able to assess the depth of 
the wave and the velocities of both the liquid and solid phases of non-stratified 
(mature) flow, following dam-break events. 
     The model is based on mass and momentum conservation equations for both 
liquid and solid phases. The McCormack–Jameson two-step explicit scheme 
with second order accuracy was employed for the solution of the equations, 
written in a conservative-law form. The technique was applied for determining 
both the propagation and the profile of a debris flow wave resulting from the 
instantaneous and complete collapse of a storage dam. Different experimental 
cases of dam-break situations in a square section channel were considered for the 
purpose of comparing results. 
     Agreements between computational and experimental results regarding both 
wave front-advance and stage hydrographs are considered very satisfactory. 
     To widen the reach of the proposed model an essential improvement has been 
outlined in the paper. This improvement will render the model suitable to predict 
stratified (immature) flow by taking into account mass and momentum 
conservation equations for each phase and layer. Momentum conservation 
equations describe energy exchanges between the two phases in the same layer 
and between layers, while mass conservation equations describe mass exchanges 
between layers. 
     Within this ground, in order to analyse reverse grading (sorting) it is 
necessary to analyse the wave propagation process, when the solid phase is 
composed of non-homogeneous material. In this case the model should be 
further improved in order to feature the distribution of the material of different 
size of the solid phase: larger size material positioned in the front and in the top 
of the wave, and finer one in the bottom and in the tail. 
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