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Abstract.

Dynamic simulation is often used to predict the behaviour of multibody systems
but, it should be sometimes completed to optimize the choice of the design
parameters by taking into account the expected performances of the mechanism.
The aim of this paper is to propose an optimal design method adapted to
mechanisms containing close loops and submitted to dynamic criteria.

A formulation based on relative coordinates and Newton-Euler laws has
been chosen, the constraint equations being expressed by the closing of the loops.
A single value decomposition method is used to divide the set of differential and
algebraic equations into two sub-spaces associated to the dependent and
independent parameters. The equations of motion are integrated by the Newmark
algorithm in its residual formulation.

The optimization step is performed by the steepest descent method with
constraint compensation.

A special design sensitivity analysis has been developed by considering time
dependent constraints, including first and second derivatives of the configuration
parameters. The primary problem is reformulated so that integrals replace the time
dependent functions. The classical adjoint variables are introduced to eliminate the
state variables in the sensitivity formulation.

The method has been applied to optimize the suspensions of an urban
railway vehicle.

1 Introduction.

When designing a multibody system, the dynamic analysis step is useful to predict
the behaviour of the mechanism for a special set of design variables. These ones
have to be optimized to improve the performances of the system without passing
the conceptual or technological boundaries. Nevertheless when dynamic behaviour
is taken into account, the optimization process becomes harder because both
performances and constraints can explicitly depend of the times.

The purpose of this paper is to describe a general method for the
optimization of the dynamic behaviour of multibody systems. A classical non linear
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508 Structures in Space

optimization approach has been adapted to suit to special features of mechanical
systems. The dynamic analysis step is based on a relative coordinates approach that
uses so-called kinetostatic elements.

The time simulation is connected to the optimization process by the
classical use of the adjoint variables.

2 Mathematical preliminaries.

2.1 Optimality necessary and sufficient conditions.

Let b be the k design variables. The nonlinear programming problem (NLP) is
usually defined as the minimization of a so-called cost function *Fg(£) subject to n
equality constraints and (m-n) inequality constraintŝ ! .(£) :

= 0 / = 1,. /, (1)

< 0 /

Let the cost and constraint functions be differentiate and A* e ** be a local
minimum for the NLP. The Kuhn-Tucker necessary condition expresses that there
exists a multiplier vector v e *"* such that ' :

v > 0 / = l,..,w

V. > 0 I ' = /7+l,..,/77

= 0 / • = AI + I,..,/H

= 0 7=1,..,*

The Lagrange function L(b,v) from cost and constraint functions is stationary at
the optimum.

Figure 1 illustrates that condition for a constraint set of allowable solutions
lays between two inequality constraints Y, and Y,. The set of the allowable
directions^ that satisfy the constraints, represents a cone with £* as apex and with
tangents to the constraints at b* as sides. A local minimum can be expected at this
point if all allowable directions^ form an obtuse angle with the direction of the non
constrained minimum -VT^. In that case, the vector -VY^ may be written as a
linear combination of 2*F with positive coefficients v. :

-2T,, = £ v VT, - VL(*',v) = 2T, + £ v,VT = 0 (3)
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Structures in Space 509

Figure 1 The Kuhn-Tucker condition.

The sufficient condition to let 6* become a local minimum is described
in[l].

Often the designer wishes to know the benefit of relaxing constraints or the
penalty associated with tightening them. One may consider the modified problem
of minimizing 9̂ (6) , subject to the constraints :

/ = n + I,..,m ^ '
\

and evaluate the variation of 9̂(6) versus g. When both the necessary Kuhn-
Tucker condition and the sufficient condition are verified, it may be shown * that,
if v. are positive for all the equality constraints, then the function b(e) is
continuous and differentiate with the following property :

/ = 1,.,,/n (5)
&,

The constraints with v. > 0 decrease the cost function if they are relaxed, but the
ones with v, < 0 increase it. In order to minimize the cost function, the last
constraints may be eliminated during the optimization process. This property yields
to the choice of the correct descent direction especially when using a gradient
projection method to solve the NLP problems.

2.2 Steepest descent method with constraint compensation.

The numerical optimization step comes from an iterative method that computes the
variation 6£ that decreases the cost from an initial design estimation b . In the
design space, vector6£ points to the direction of the minimum. Among all the
allowable directions, the most efficient choice corresponds to the opposite side of
the gradient of the cost function computed at the point b . This yields :

§£ = -<*VYo(6 ) a > 0 (6)
The direction of the steepest descent, given by the gradient of the cost function, is
projected on the tangent to the constraints. The next iteration is chosen in such a
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510 Structures in Space

way that it decreases the cost without transgressing the constraints. Usually only
the set of the tight inequality constraints (which are nearly zero) are taken into
account. Hence the e -actives constraints are defined by :

0 / = /i + l,..,m ^

If we note the set of that kind of constraints Y(6), the problem becomes
computing the variation 6£ that decreases 4̂(6 + 66) and satisfying $(£) . It may
be written to the following local form :

3w

searching : 6^ = - -6b = l*bb (8)
db

with the constraints : 5T = - —6b = 7̂ 86 (9)
db

In order to annulate the violation of the constraints ¥_(b ), it is convenient to set
8!£ = -Y(6 ). Moreover bb should be small enough to avoid non linear effects.
It is then useful to add the following further constraint to restrict the variation of

< ? (10)
where W is a diagonal weighting matrix.

Applying the necessary Kuhn-Tucker condition (2) to this problem, yields
the m multipliers ji. ^ 0 (/ > /?) and one multiplier y * 0 such that * :

= o
(11)

= 0 / > ̂

?) = 0

The multipliers fi. and y ^ 0 should be positive If one of them is negative, the
associated constraint is eliminated from the set of e -active constraints and a new
computation of the multipliers is performed until all of them become strictly
positive.

3 Optimization of multibody systems.

The optimization of the dynamic behaviour of multibody systems is complicated
by the explicit time dependency. On one hand, the equations of motion, so-called
state equations, are of course time dependent, as well as the cost and constraint
functions. On the other hand, the configuration parameters g describing the motion
of the multibody system, aren't design variables because their values are obtained
from the integration of the state equations. They are called state variables.
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Structures in Space 51 1

Let first consider the case of a system described by N generalized
coordinates without any kinematic constraints. Then the configuration parameters g
fit the N degrees of freedom of the system.

The specific class of problems treated here includes minimization of
extreme dynamic response, subject to performance constraints that must hold over
the entire time interval [0 t] . The cost function 9^ that has to be minimized is
written as :

To = max /)(W/)#)#),') (12)
ff(0 tl

It can be for example the maximum acceleration of one of the bodies of a
mechanism under operating conditions. The constraints are usually time dependent
and express, for example, the limited range of the relative distance between two
bodies during their motion :

4(&«(/),0 * 0 /e[0 T] (13)
Moreover the design variables £, which concern geometric characteristics,

inertia, stiffness or damping properties, have to stay between technological lower
and upper boundaries frf- and b" that lead to further constraints :

As it has been shown in 2.2 the optimization process needs the calculation
of sensitivities versus the design variables, which are rather difficult to compute in
presence of state variables and time dependent functions. The initial problem is
therefore reformulated in the form of an equivalent functional formulation so that
the constraints are transformed into time non-dependent functions. These are equal
to zero when the constraints are satisfied and become positive otherwise \ Let
define the "equivalent" operator o such that :

=
\ 0 si 4>(/) < 0

the equivalent constraint during [0 t] is now replaced by :

(16)
o

Because of the difficulty in treating the max-value of equation (12), a new
design variable b^, is defined as the upper bound of /^ and leads to the following
inequality :

/o(A,a,«,«,0 - 6̂ 1 ^ 0 'e[0 T] (17)
The cost function can now be taken as :

To = ̂ *i (18)
with the following further constraint :
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512 Structures in Space

(19)

In practice, to adapt the optimization method to the dynamic behaviour of
multibody systems, two steps have to be performed :

- firstly the dynamic analysis of the multibody system to get the time history
of the state variables;
- secondly the calculation of the sensitivities of the time constraints versus
the design variables.

4. Dynamic analysis.

4.1 Description of multibody systems.

The principle of a residual formulation is based upon the direct calculation of the
residuesf which physically correspond to the gap between the generalized forces
that should be applied to get a given kinematic state and the generalized forces
effectively applied by the actuators, springs or dampers.

The kinematic approach chosen to describe the motion of the system is
based upon relative coordinates. The mechanical system is basically modelled as
a set of open kinematic chains starting from the ground. In closed loop systems,
the loops are first opened, imaging a joint to be cut, in order to obtain a tree-like
mechanism that can be described as a set of kinematic chains. The cutting of a joint
is taken into account by means of algebraic closure equations, corresponding to the
geometric conditions imposed by the joint.

The kinematic chains are defined as a succession of frames, linked by so-
called kinetostatic elements (figure 3), each of them being described by the relation
between an entry frame (subscript e) and an exit frame (subscript s) and
indifferently addresses joints and bodies. In more general way, a kinetostatic
element can be seen as a movement and effort transformer (figure 2) *.

Movement
transformer

Entry
frame

kinematic parameters

position
velocity
acceleration—»
efforts

— V

1-»
<-4

Kinetostatic
element

— »•

*-

position
velocity
acceleration
efforts

Effort
transformer

Exit
frame

Figure 2 Principle of the kinetostatic element.
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Structures in Space 513

As a movement transformer, a kinetostatic element defines the relative
situation of the exit and entry frames. Depending on whether there is a relative
motion of the exit frame with respect to the entry frame, the element is said to be
either active (e.g. articulation) or passive (e.g. rigid body). In the case of an active
element, the relative motion is described in terms of certain so-called kinematic
parameters associated with the element (e.g. the angle for a revolute articulation).
It is then possible, for each element, to calculate the positions, velocities and
accelerations of the exit frame, from the ones of the entry frame, and in terms of
the values, first and second derivatives of the eventual kinematic parameters g
associated with the element. For example the absolute rotation and translation
velocities of the exit frame ca and v are computed by the following formula :

(20)
^ (21)

where w andv are the absolute rotation and translation velocities of the entry
frame and r ,w and v the relative positions, angular and linear velocities of
the exit frame with respect to the entry frame, calculated from the kinematic
parameters associated with the element.

As an effort transformer, a kinetostatic element defines how to compute the
efforts at the entry frame from the ones at the exit frame, and the own
contributions of the element, as :

£ = £ + A£ (22)
M = tA + /xf + AM (23)

e s ~s/e s

where £ , M , E and M are the forces and moments applied to the frame e and
s by the next elements and A£ and AM are the internal contributions, coming
especially from the inertia effects.

4.2 Equations of motion of an open loop system.

The residual formulation consists in a direct calculation of the residues relative to
the configuration parameters, which correspond to the kinematic parameters
associated with all active elements used to model the multibody system. It can be
achieved by two successive recursions along the kinematic chains (figure 3) :

- a forward recursion, starting from the ground, in order to compute the
kinematic state of all the frames, in terms of the values, first and second
derivatives of the configuration parameters, by using the movement
transformation relations (20,21);
- a backward recursion, starting from the end of the kinematic chains, in
order to calculate the efforts in each frame, by the effort transformation
relations (22,23).
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5 1 4 Structures in Space

Backward
Recursion

F,M

Known applied forces

Backward
Recursion

Figure 3 Forward and backward recursions.

The residue relative to a kinematic parameter associated with an active element can
then be calculated by: gy ^ -\r>

/, = -E,-̂  - M-=^ ~ -? (24)
' dq * dq dq

where P^ refers to the internal power of the element, induced by inertia forces and
springs, dampers or actuators eventually associated with the element. The set of
equations (there are as many equations as configuration parameters) yields to the
system of differential equations where the unknown functions are the configuration
parametersg and the first and second derivatives^ and £.

.0 = Q (25)

4.3 Integration of the differential equations of motion.

Whatever the chosen method, integration is a step-by-step procedure which
consists of determining from evaluations of the values, velocities and accelerations #',
g', g'at time /, the values, velocities and accelerations g'*̂ ', £'**', £** at time
/ + A/. The integration method is reorganized as a second-order scheme. In that
case, the position and velocity of each degree of freedom at time / + A/ can be
expressed from the state at time / and the acceleration at time/ + A/ of the same
degree of freedom, by means of integration formulas A and A' as * :

',6',4r') (26)
Ŵ ) (27)

depending upon the chosen integration method and the time step. The set of the
dynamic equations (25) can then be rewritten in order that the only unknowns are
the accelerations #**' :

.&Z',6',g',6rA') = 0 - JEOTA') = 0 (28)

Equation (28) is solved through the classical iterative Newton-Raphson method,
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Structures in Space 5 1 5

where the iteration /'+/ is calculated from the preceding one, as :

<£*' = ̂'-J-'j£(<z':*') (29)

where J refers to the iteration matrix of the system (28), defined by :

df a/ 8A' 8/ 8A,
•*' + _ii _ L_ + _JLL _ ;

8A' 8A.
cr — ̂  + AT

V . .. f +Af V . ..

The matrices M, KT and CT are respectively called the mass matrix and the
stiffness and damping tangent matrices.

In practice, a Newmark implicit integration scheme well adapted to second
order differential equations has been chosen. In that case the integration formulas
become :

* = ' + A/<' + 0.5-A/ + A/*<*' 0<P<1

y<l

and the iteration matrix has the following form :
J = M + yA/Cr f pA/^7 (33)

4.4 Kinematic constraint equations.

In presence of kinematic closed loops, the cutting of some joints provides a tree-
like topology and induces a set of classical algebraic constraint equations :

W = Q (34)
These kinematic constraints produce constraint forces at the cut joints that

must be taken into account in the equilibrium equations :

.&W,&')+/, = Q (35)
It is well-known that the generalized constraint forces f are associated to the
Jacobian matrix of the constraints by means of the Lagrange multipliers :

/ = £^<Z (36)

86(2)
- B : Jacobian matrix of the constraints B. - — • — ;
- a : vector of the Lagrange multipliers. ^/

The dynamic equilibrium equations of the constrained mechanism are
composed of dififerential equations (35) and algebraic equations (34) expressed for
example in the acceleration space domain :

mw^+a'o = Q (37)
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516 Structures in Space

= Q (38)

With the help of integration formulas (26) and (27) and in the same way
that gives the residual equations (28), it is possible to transform the integration of
the equations (37) and (38) to the solution of a non linear system where the
unknowns are the accelerations at the time / + A/ and the Lagrange multipliers :

,fl) = 0 (39)

(40)
By using the Newton-Raphson method, we then get :

J B

B 0

4f+Af
*/ + l

Ao
= Q (41)

For solving the equations (41) we use a reduction method to partition the set of the
configuration parameters in dependent and independent variables. In that case, the
system (41) is simplified as there isn't anymore constraint equation and because the
number of variables has decreased. In practice we use the singular decomposition
value to automatically get the best degrees of freedom even when the Jacobian
matrix is ill-conditioned *.

4.5 Reduction formulation based on the singular value decomposition.

Let B be a (m*l) matrix with rank r<m. The singular value decomposition
theorem tells that it exists r non zero eigenvalues that satisfy the relation :

B ̂ By_ = w (42)
Thanks to the eigenvectors associated to each non zero eigenvalues u., the matrix
B is transformed in such a way :

B = [{/,
S,, 0

0 0 0
(43)

Sjj : diagonal matrix composed by the r non zero eigenvalues;
t/y, (A, Vj, V,: orthogonal matrices composed by the eigenvectors.
Let be :

(44)

The set of equations is then transformed to :

Bg. = Q - f/,5 = Q (45)
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Structures in Space 517

where x is chosen to satisfy the constraints but x has no effect on them and then
can freely change. Let apply this property to the Jacobian matrix : from the
equations of motion (41) we get :

0

= Q

= o

(46)

(47)

x has to satisfy the constraints and is obviously associated to the dependent
parameters, whereas £ is taken as the degrees of freedom of the mechanism.
By multiplying equation (46) by the orthogonal matrix \V^ P̂ F, we finally get :

This system of differential equations is diagonal and can be solved in that particular
way : the third system is firstly solved because it only depends from Ax^*',
afterwards the second one, where there are Ax'̂ ' and Ax'**' together and finally~rj + \ nj + \
the first one to get the Lagrange multipliers. This method is interesting for
automatically taking to account the kinematic constraints despite the fact that it
needs more numerical calculations. Moreover it easily eliminates the redundant
constraints and gets well conditioned Jacobian matrix *.

5 Sensitivity analysis by the adjoint variable method.

5.1 Open loop multibody systems.

Let assume first that the multibody system has no closed loop and that the
constraints for the optimization don't involve any acceleration. Let £(r,r,£,/) = Q
stand for the classical first order differential equations of motion (z = [g.,g.Y) and
let X be arbitrary time dependent functions, called adjoint variables or adjoint
functions, defined by the following identity * :

= 0

The first order development of this equation yields :

'̂  + f̂ ' ^&
—t>i + —Si + —bb)<1t = 0

(49)

(50)
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5 1 8 Structures in Space

By integrating the first term by parts, one obtains after rearranging the
corresponding terms * :

= r 2/6W, (52)
J dbdi di dt J db

Adjoint variables, whose number is the same as constraint functions, may be
chosen in such a way that :

"
'

A(% = o

The /'* constraint sensitivity with its integral formulation is given by :

(54)
do

Thanks to the special choice of the adjoint variables, equation (54) can be rewritten
in such a way that only design variables b are concerned :

The sensitivity vector /, of the /'* constraint is then reduced to :

?
db 'I db

5.2 Closed loop multibody systems.

(56)

When the mechanism contains closed loops, the configuration parameters z are not
independent. The computation of derivatives of the cost and constraint functions
is not direct. However the singular value decomposition of the Jacobian matrix of
kinematic constraints is helpful to express the derivatives versus the degrees of
freedom y_ - [x ,x ]*" in place of the configuration parameters z :

dF 3£

f^ = IT̂ ^dy. dz

a*" act, (57)

T^ = -r̂ ]̂dy. dzn
This way takes into account the kinematic constraints with an identical formulation
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Structures in Space 519

regarding adjoint variables and sensitivities. Finally the derivatives of the equations
of motion versus degrees of freedom y. are expressed by the mass matrix M, the
stiffness matrix K and the damping matrix C :

M 0

0 /

C K

-I 0

(58)

5.3 Constraints with accelerations.

When the acceleration of the configuration parameters are involved in the
this adjoint variable method has to be transformed. The equations of motion lead
to the following expression for the sensitivity of the configuration parameters
versus the design variables :

Ob fdz
<* * , *,
dz £>b db

In that particular case, the /'* constraint is transformed to :

64), = ̂5z + ̂62 + 6̂6dz dz db
(60)

"V, m , , oWj 0£ GY, OS. G^,
00 = (—; + + )0_

we/ dz_ ob. dz_ ob. db.

d(J) 5cp d£ * dF oz d<b dF ^ dF d&f i - {. \ _ ' + i
di di di dg 6Z> di di db. db.

With equation (58) the previous one is rewritten to :

&z #,,

db. di di

dE #,

~db*~db

(61)

66 (62)

66 (63)

In that case the /'* adjoint variable is defined by :

?-i,)= 1(64)

= o

and sensitivity vector /, gets the following expression similar to equation (56) :

di
) — )5£<// (65)
db
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520 Structures in Space

6 Example.

When designing the suspension of a railway urban vehicle, one of the main criteria
deals with the lateral behaviour of the tramway when it is running on narrow
curves with small radius. In order to maximize the comfort when crossing such
curves, the lateral acceleration has to be minimized by choosing efficient
suspension properties. Figure 5 illustrates the case of a railway vehicle composed
by two carbodies and two motor bogies and which has to be adapted to specific
traffic constraints corresponding to
low radius CUrveS (14 m) at the revolute constraint
constant speed of 3.7 m/s (13.3 km/s).
Figure 4 shows the kinematic chains
describing the topology of the vehicle
: it is composed of 4 bodies, 7
revolute joints and 2 curve-sliding
joints. In practice the problem is to
choice the yaw properties of the
secondary suspension between the
carbodies and the bogies in such a
manner that the maximum lateral rear bogie
acceleration reached by the front of
the vehicle is minimum. The design
variables are the yaw stiffness and the
damping value of the front (A/ and b^
respectively) and the rear bogies (b,
and bj). There are two kinds of
constraints, on one hand, to limit the
range of variation of the design

front carbody

yaw

pitch

roll

vertical

lateral

S front bogie

SCI sliding contact

ELitients:
S: rigid body
P X, Y,Z : prismatic joint of axis X. Y or Z
R X, Y,Z: revolute joint ofaxix X.YorZ

Figure 4 Topology of the vehicle.

Q Q
mfm

0 Q

Figure 5 The Low Floor Vehicle.

variables and, on the other hand, to limit the relative yaw motion between
carbodies and bogies.

Starting from initial design variables b̂  = (246 KNm/rad, 246 KNm/rad, 15
KNms/rad, 15 KNms/rad/, the cost function is equal to 2.83 m/s*. Figure 6 shows
the evolution of the cost function during the iterative process and figure 7
illustrates the evolution of the design variables. The optimum is reached with b^,
= (323 KNm/rad, 477KNm/rad, 27 KNms/rad, 15 KNms/rad/ leading to a lower
maximum lateral acceleration (1.91 m/s*, figure 8) and satisfying all the constraints.
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Structures in Space 521

Cosf function

2,5-

2-

1,5-

1-

0.5-

0-
10 15 20

Iterations
25 30

Figure 6 Evolution of the cost function
during the optimization.

Design variables

300-

200-

100-

0

• • ••s* • '•
**«**̂ «̂ >C,'iv̂ »̂ >̂ '̂̂ .,i;̂ '/»̂ uŝ iVllV4A'
) 5 10 15 20 25 30

Iterations
hi front ̂ Hffne*Gc /k'/V/mA-a/-/!
b2 rear stiffness (KNm/rad)
63 front damper (KNms/rad)
b4 rear damper (KNms/rad)

Figure 7 Evolution of the design variables during
the optimization.

-2

Acceleration

4 6
Time (s)

Figure 8 Optimum acceleration of the
front vehicle.

                                                             Transactions on the Built Environment vol 19, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 
 
                                                                                  
 
                                                                      
 
                                                                                  
 
 
 
 
 
 

                            
                                                                                  
                                                                                  
                                                                                  
 
 

 
                                                                                                                                         
                                                        

 
                   

 
 
 



522 Structures in Space

7 Conclusions.

The optimization of the dynamic behaviour of multibody systems combines
computer aided dynamic analysis of mechanisms and classical methods of
optimization. A general method has been proposed, which uses formulation of
dynamic equations based on kinetostatic elements and residual form integration;
the optimization process is based on the steepest descent method with constraint
compensation.

The equations of motion can be considered as constraint functions
depending of state variables. It is useful to consider in the same time the state
equations and the constraint functions by means of the classical adjoint variables
to easily compute the sensitivity of the constraints and the cosf function versus the
design variables.

Because of the time dependency of the state equations, the constraints and
the cost function are expressed into their equivalent integral form.

i
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