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Abstract 

Decision-making in coastal waters management is a complex and 
interdisciplinary task. Particularly, to find seasonal patterns and ecological 
thresholds, which are not always clear in tropical areas. Therefore, the ultimate 
in this activity is to gain knowledge about biogenic element, the biological 
response, and the selection of indicators which may reveal the trophic status of 
the system. Under this scenario, this paper applies Data Mining techniques as an 
alternative approach in order to access hidden patterns of in situ flow cytometry 
monitoring data. The case studied is the upwelling influenced bay at Cabo Frio 
Island (Rio de Janeiro-Brazil). A neural network uses phytoplankton and 
bacterial data of real time monitoring as input variables to forecast marine 
viruses temporal variability. We also demonstrate that it is possible to access 
patterns of planktonic community structure in different water masses within a set 
of association rules. 
Keywords: knowledge discovery, data mining, pattern recognition, 
environmental monitoring, coastal management. 

1 Introduction 

Pollution of coastal environment is a serious environmental problem and affects 
both developed and developing countries. It comes from different sources [1] 
causing mainly eutrophication of the coastal waters [2]. In this way, the Brazilian 
coast that presents a large variety of marine ecosystems and habitats are 
subjected to discharge of contaminants via sewage, industrial effluents, dredged 
material, accidental chemical and oil drilling spills, urban and agricultural runoff 
and atmospheric deposition from land-based activities like worldwide [3]. The 
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continuous reception of pollutants in coastal waters results in adverse effects on 
different organisms from the molecular level to the community level thus 
reducing the biodiversity and productivity of marine ecosystem and depletes 
marine resources [4]. 
     In Brazil, the standards of environmental quality are still based in concepts of 
maximum admissible concentration level of pollutant according to the National 
Environmental Council (CONAMA). However, many authors have used 
phytoplankton [5, 6] or bacteria [7, 8] as bioindicators. However, viruses have 
been considered ecologically important members of aquatic communities as they 
influence biogeochemical cycles, community composition and horizontal gene 
transfer [9, 10]. In this way the ecological communities, plays a complex net of 
trophic interactions comprising many types of organism and should be used as a 
baseline indicator of ecological status through its biological integrity. 
Consequently, the management of coastal zone received more attention and 
efforts of different modelling approaches for predicting indicators as descriptors 
of system behavior [11–15]. 
     Once a virus cannot be detected in real time monitoring, the aim of this work 
is to apply artificial neural networks (ANN) for estimating marine viruses from 
bacterial and phytoplankton abundance and association rules algorithm in order 
to find patterns of plankton community structure in situ and ex situ flow 
cytometry monitoring data. 

2 Material and methods 

2.1 Studied areas 

The Southwest Atlantic Ocean off Brazil is known by its oligotrophy due to the 
prevailing Brazil Current (BC) that runs southwards, carrying Tropical Water 
(TW) from the vicinity of the Equator. Moving in the bottom on the opposite 
direction, there is the cold South Atlantic Central Water (SACW or ACAS) 
mass. In Arraial do Cabo, Northeast of Rio de Janeiro state (23ºS, 42ºW), the 
action of E-NE winds results in a shunting of the nutrient-depleted surface TW 
of Brazil Current to offshore followed by the up-flow of the deeper and nutrient-
rich SACW. The inverse pattern comes with the S-SW winds when cold fronts 
bring the oligotrophic TW back to the coast. 

2.2 Sampling procedure 

Seawater samples were collected at the surface with a Nansen bottle with a 
reverse thermometer outside. Salinity, were determined ashore as described in 
[16]. Simultaneously, in situ flow cytometry measures were done. Samples of 
200 ml were immediately fixed with 4% of paraformaldehyde for further 
cytometric (~3h) analyzes. Water masses identification and clustering were made 
according to the interval of temperature and salinity data provided by the 
Oceanography Department of Instituto de Estudos do Mar Almirante Paulo 
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Moreira-IEAPM (data not shown). The time series used for model predictions 
starts in August of 2006 and finished in June of 2007. 

3 Flow cytometry 

Phytoplankton enumerations were performed in situ with the CytoBuoy bench 
top flow cytometer [17]. Parameters were collected on a log scale using the 
CytoSift software and analyzed in the CytoClus software, both provided by the 
manufacturer (Figure 1a). 
     The real time enumeration of heterotrophic bacteria were performed 
simultaneously to the phytoplankton but the discrimination criteria was to filter 
data that have cytometric signatures with appropriate size (bacterial size range), 
no fluorescence (heterotrophy indication) and high side scatter signal (great 
metabolic activity-alive). This strategy was validated through comparisons with 
stained samples in the same cytometer in the lab. 
     The virus enumeration were performed with a FACScan flow cytometer 
(Becton Dickson, San Jose, Calif.) in the lab. Yellow-green 0,92-µm beads 
(Fluoresbrite Microparticles, Polysciences) were added to all samples as an 
internal standard (Figure 1b). The samples were stained with SYBR-Green-1 at a 
final concentration of 0.5 X 10-4 of the commercial stock solution according to 
[18]. The parameters for bacteria and viral counts were collected on a log scale 
and analyzed in the CellQuest™ Pro software provided by the manufacturer. 

4 Analytical procedures 

The statistical analysis and the ANNs models developed were performed in the 
Statistica 7.0 package software. For knowledge representation all variables were 
discretized into three intervals (low, mean, and high) according interviews with 
IEAPM plankton experts who set the cut points of variables. To this matrix was 
applied a modified Apriori algorithm in order to mine associations rules (if-them 
type) in the CBA 1.0 software [19]. 
 
 
 
 
 
 

 
 

Figure 1: In a are present all phytoplankton distribution according their side 
scatter and chlorophyll fluorescence (red fluorescence) measured 
by the CytoBuoy cytometer. In b, one SYBR Green I stained 
sample demonstrating two groups of bacterial (LDNA, HDNA) 
and viruses (V-1, V-2) with different green fluorescence intensities 
respectively. 
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5 Results and discussion 

Each dot depicted in Figure 1 is a suspended particle read by the two cytometers. 
In the case of Figure 1a, it presents the spread of real time data of phytoplankton 
cells acquired (radio transmitted) by the CytoBuoy flow cytometer since the red 
fluorescence signals are the results of chlorophyll-a response to laser excitation. 
The side scatter (SSC) is usually considered a measure of complexity. During the 
studied period, the total phytoplankton concentration varied from 8,66 x 102 
cells/ml-1 in the summer to only 330 cells/ml-1 in the winter. 
     Figure 1b shows the picoplankton particle distribution. Two clusters of 
bacterial populations (LDNA and HDNA) with different green fluorescence 
intensities are easily noted indicating different nucleic acid content. The optical 
signatures of these groups were used for validation of real time data (in 
CytoBuoy acquisitions) and the total bacterioplankton varied from 1,24 x 106 
cells/ml-1 in the summer to 1,51 x 103 cells/ml-1 in the winter. 
     Two viral populations are also noted: V-2 with lower fluorescence intensity is 
usually considered to be composed of bacteriophages [20] while V-1 is a diverse 
group that infects eukaryotes [21]. The total virioplankton community varied 
from 2,86 x 106 particles/ml-1 in summer to 6,21 x 105 particles/ml-1 in the same 
season. The correlations among biotic and abiotic variables are demonstrated in 
Table 1. The highest and most significant correlation is observed between 
heterotrophic bacteria (Bac Het) and the virus group V-2 (r2 =0.97, n = 39, p< 
0.05). Coincidently phytoplankton (Phyto) shows the same correlation to V-2. In 
the same way, V-1 presents a smaller but still high correlation to bacteria and 
phytoplankton (r2 =0.91, n = 39, p< 0.05). 

Table 1:  Studied variables: V1 and V2 (viral sub-groups of low and high 
fluorescence), VT, total virus (sum of V1 and V2), Bac Het, 
heterotrophic bacteria, Fito, fitoplankton, Larvae, total of 
meroplankton larvae, Temp, temperature, Sal, salinity.  
Significance in bold numbers. Level of significance p < 0.05. 

 
 
 
 
 
 
 
 
     The total virioplankton community (VT), the sum of V-1 and V-2, also shows 
a significant correlation to bacteria and microalgae communities (r2 =0.76, n = 
39, p< 0.05). Thus, our results suggest that both viral groups are equally active in 
bacteria and phytoplankton; however, to date we do not have any indication 
about phage infecting eukaryotic cells. Table 2 also shows that V-2 is highly 

 Variables V1 V2 VT Het Bac Phyto Larvae Temp Sal
V1 1.00 0,88 0,64 0,91 0,91 0,12 -0,13 0,03
V2 1.00 0,72 0,97 0,97 0,22 -0,14 0,13
VT 1.00 0,76 0,76 0,22 -0,09 0,26

Het Bac 1.00 1.00 0,09 -0,16 -0,08
Phyto 1.00 -0,29 -0,16 -0,08
Larvae 1.00 0,08 0,07
Temp 1.00 -0,15

Sal 1.00
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correlated to V-1 (r2 =0.88, n = 39, p< 0.05) and this is more correlated to VT 
than V-1 (r2 =0.72, n = 39, p< 0.05). 
     The clustering procedure allowed us to verify the mean occurrence of the 
studied variables in each water mass. These data are shown in Table 2. 

Table 2:  Mean values of studied variables in different wares masses of 
Arraial do Cabo upwelling system. 

WATER MASS V-1/ml
-1 

V-2/ml
-1

VT/ml
-1

Het Bac/ml
-1

Phyto/ml
-1

Bac/Phyto VBR Larvae Temp Sal

SACW             n=4 1,43E+06 8,04E+03 2,23E+06 8,06E+04 1,14E+02 7 28 0,15 18,00 35,55

COAST/TROP n=22 8,19E+05 4,69E+03 1,29E+06 2,63E+05 1,29E+02 20 5 0,30 23,12 35,59

TROPICAL      n=12 9,56E+05 5,89E+03 1,55E+06 1,40E+05 6,41E+01 21 11 0,26 22,43 36,06  
 
     It is evident that V-1 is numerically dominant over V-2. The total virus 
community (VT) is more abundant than bacteria in at least one order of 
magnitude and bacteria are three times higher than phytoplankton. The highest 
mean value of virioplankton occurs in the SACW (n=4) while the highest mean 
values of bacteria, phytoplankton and meroplankton larvae occurs in the mixing 
of coastal and tropical waters (Cost/Trop, n=22). The cold water of SACW 
shows the smallest bacterial/phytoplankton ratio (Bac/Phyto) and the highest 
virus/bacterial ratio (VBR) indicating a great viral activity. This fact could 
explain why the more nutrient rich waters are not so productive. 
     From a management point of view, we used a supervised approach and 
genetic algorithm to evolve neural networks models to estimate the viral 
abundance (production controllers) from our field measurements of 
phytoplankton (primary producers) and heterotrophic bacteria (secondary 
production). 
 
 
 
 
 

 
 
 
 
 
 
 

 

Figure 2: The three evolved neural network models behavior for total viruses 
(VT) prediction. MLP, multilayer perceptron; RBF, radial basis 
function and GRNN, general regression neural network. 

     Figure 2 demonstrates the behavior of three different type of ANN. Although 
the great variability of total virioplankton (VT = V-1 + V-2) shows two higher 
values in the middle of the studied period. These peaks are coincident with low 
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temperatures due to upwelling events (not shown) in these date. In general all the 
three models are able to follow the behavior of this function however; the 
Multilayer Perceptron (MLP 1) neural network seems to be closer while Radial 
Basis Function (RBF) has a better estimate for higher values (peaks) and the 
General Regression neural network (GRNN) for smaller values. 
     Table 4 presents the RMSE error of training, test and validation data sets. It is 
clear that RBF is the more fitted model (R2 = 0,97) to forecast viroplankton but 
these results should be viewed with some care due to RMSE penalize the error in 
the highest values. 

Table 3:  Neural network performance and error (RMSE) in training, test 
and validation data set. 

 
 
 
 
 
 
     Although the huge natural variability of plankton we were able to mine and 
explicit some interesting association rules about the community structure. 
Examples are: 
     If TEMP low and SAL mean and PHYTO low them VIR high and BAC high 
[0.20%, 100%] (1) 
     If TEMP high and SAL mean and BAC mean them VIR mean [26.19%, 
100%] (2) 
     If PHYTO high and BAC mean and TEMP mean them VIR mean [0.19%, 
97%] (3) 
     If BAC high and VIR mean and SAL mean them PHYTO low [2.40%, 99%] 
(4) 
     If TEMP mean and BAC mean and PHYTO low them  SAL high [7.35%, 
99%] (5) 
     This set of rules reveals how community is structured and related to some 
environmental variables. It can be used as an initialization tool for visual 
inspections of food web interactions under abiotic conditions. The percentages 
between clasps mean firstly the support value which is the occurrence of the rule 
along the data set and secondly, its confidence level. The rule 1 is a clear 
example of SACW due to low temperature (TEMP) and salinity (SAL) is mean. 
Under this condition this rule depict also high virus (VIR) and low 
phytoplankton (PHYTO) values what was demonstrate in Table 2. The most 
common situation is present in rule 2 when Temperature increase to high and 
salinity decreased to mean. This is the case of the mixing of coastal and tropical 
water masses. In these case both bacteria and viruses shows mean value. We 
cannot forget although the interval mean, viruses are always the most abundant 
entity in the ecosystem. A special event of primary production is demonstrated in 
rule 3, in this case phytoplankton is high and bacteria are mean. It is example of 
mixing of SACW and the tropical water of Brazil Current. The rule 4 can be 

Models Train Test Validation R2

MLP 0,039232 0,029721 0,025814 0,84
RBF 0,005493 0,000427 0,000002 0,97

GRNN 0,005851 0,000923 0,000006 0,8
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interpreted by another example of coastal and tropical water mixing, the 
difference of rule 2 are high bacteria values. Finally, rule 5 shows the 
oligotrophic condition of tropical water with low primary production of 
phytoplankton and mean values of bacteria occurring in the highest values of 
salinity and mean temperature. 

5.1 Ecological interpretations 

In the Arraial do Cabo upwelling system the emergence of SACW can find two 
different water mass, the Coastal or the Tropical. We hypothesize that upwelling 
events at least in narrow waters the up flow can bring mineral nutrient, organic 
matter, bacteria and viruses from the interface of sediment. These entrances of 
energy in water column take both bacteria and phytoplankton to growth but as 
they increase in abundance they also increase the susceptibility to virus infection. 
In this way, virus can control all the productivity in surface water but we 
speculate that some physical and biological factor can work at this moment. It is 
known that sum light can inactivate viruses and also as the water temperature 
increases and host availability decreases both factor synergistically working 
would induce virus populations to change from lytic to lysogenic life cycle. 
Thus, allowing the coexistence of all populations. 
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