Data Mining IX 287

Selective alerts for runtime protection of
distributed systems

M. Colajanni, D. Gozzi & M. Marchetti
Department of Information Engineering,
University of Modena and Reggio Emilia, Italy

Abstract

Network Intrusion Detection Systems (NIDS) are popular components for a fast
detection of network attacks and intrusions, but their efficacy is limited by over-
whelming amounts of false alarms that have to be manually managed by system
administrators. In order to improve the efficacy of attack detection and reduce the
amount of false positives, we propose a novel scheme for runtime alert manage-
ment. It filters innocuous attacks by taking advantage of the correlation between
the NIDS alerts and detailed information concerning the protected information
systems, that is retrieved from heterogeneous and unstructured data sources.
Thanks to the proposed scheme, an alert is sent to the system administrator only if
an attack threatens some real vulnerability of the protected hosts. Otherwise, as it
occurs in the large majority of the cases, the alert is stored for a subsequent offline
analysis. The viability and efficacy of the proposed solution are demonstrated
through an operative prototype that has been tested in networks subject to realistic
attacks.

Keywords: intrusion detection system, network protection, false positive reduction,
alert correlation, alert filtering.

1 Introduction

All modern networked information systems must be protected by some hardware
or software appliance. Beyond the first line of defense represented by firewalls, the
Network Intrusion Detection Systems (NIDS) are the most valuable technology for
increasing the network security level through a continuous monitoring and analysis
of the network traffic. A generic NIDS processes a copy of the traffic flowing
through the protected networks, with the aim of finding illicit activities, attacks

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)
doi:10.2495/DATA080271



288 Data Mining IX

and intrusions. Hence, a properly configured NIDS is able to spot activities that
have not been blocked by a firewall, either because these attacks rely on traffic that
is considered licit or because of a misconfiguration.

Unlike the previous attacks that were mainly carried out manually, the vast
majority of modern attacks are performed through self-replicating malware that
is sent blindly against randomly chosen hosts. As a consequence, often a NIDS
signals many attacks which cannot be effective because the targeted service is
not available or because that vulnerability cannot affect any host of the protected
network. These alarms are false positives for the system administrator, but a NIDS
alone is not able to assess whether they represent a real threat for the protected
machines. Nowadays, it is the network administrator responsibility to carry out
for each alarm further examinations of the incidents reported by the NIDS, as
well as to devise and deploy the proper countermeasures. Hence, administrators
are forced to waste precious time for a manual analysis of irrelevant security
alerts. If the false positive rate is too high, the number of false alerts can easily
overwhelm the number of alerts related to real network attacks by several orders of
magnitude, thus rendering the NIDS completely useless, although fully functional.
Moreover, several attacker tools exist that are able to automatically trigger so called
alert storms. They generate a large number of irrelevant alerts that overwhelm the
investigation time and skills and avoid or delay attack detection.

Our goal is to allow the system administrators to focus on few relevant, high
priority alerts. To this purpose, we describe a runtime alert filtering scheme that is
able to discard most of the irrelevant alerts without the need of human intervention.
This proposal effectively mitigates the issues related to false positives and allows
a fast and focused reaction of the security team. While a typical NIDS assesses
the possible risks by relying only on information conveyed by the network traffic,
the proposed scheme correlates at runtime the NIDS alerts with other information
coming from multiple, heterogeneous and unstructured data sources.

Once the NIDS detects an attack, the related alert is automatically examined
in order to extract information related to the vulnerability that the attack tries to
exploit. A list of vulnerable applications is then compared with the configuration of
the host targeted by the attack. If a match is found, this means that the victim host is
really vulnerable to the detected attack. As a consequence, the probability of a suc-
cessful network intrusion is high, and the alert priority is raised to signal a request
of immediate intervention. On the other hand, if the targeted host is not vulnerable
to the attack, the alert priority can be safely lowered and stored for offline analysis.

Our approach is innovative in the way we correlate intrusion alerts with different
sources of data, not just with alerts coming from other NIDS sensors. In such
a way, we can filter NIDS alerts on the basis of information that cannot be
determined by the analysis of network traffic alone. In designing and realizing the
described prototype we faced several challenges, such as information extraction
from unstructured data sources, constant update of vulnerability-related informa-
tion, and alert processing speed. Both viability and effectiveness of the proposed
solution are demonstrated through a fully operative prototype that is based on open
source software.

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



Data Mining IX 289

The remainder of this paper is organized as follows. Section 2 describes the
current shortcomings that characterize unranked NIDS alerts and motivates our
innovative approach for the reduction of false positives. Section 3 outlines the
proposed runtime scheme for filtering false alarms. Section 4 describes the most
innovative solutions that are integrated into an operative prototype tested on a real
scenario. Section 5 reports some concluding remarks.

2 Intrusion alert filtering and ranking

Several efforts have been devoted to the design and deployment of appliances for
computer network security. As an example, network firewalls are included in the
large majority of modern operating systems and hardware devices (e.g., routers,
wireless access points, modems). Network intrusion detection systems are part of
the security infrastructure, but their potential has been only partially exploited.
Most organizations still utilize NIDS to log intrusion attempts. Collected data is
examined only after an incident has been detected through other signals (e.g., bad
server behavior, huge spread of worm infections, large increase of some types of
network traffic). This approach to NIDS comes from the limitations of the early
appliances, which were too slow to analyze network traffic at runtime. For these
reasons, the traffic was recorded and analyzed in batch mode usually at night when
the system load was low.

Nowadays, modern NIDS are able to analyze data at runtime and therefore
they can be used to detect attacks while they are occurring. Once the NIDS has
identified an illicit network activity, an alert is immediately generated and sent to
the system administrator, which receives several useful information, such as the
host that has been targeted by the attack and the vulnerability that the attack tried
to exploit.

The worst problem that administrators have to face while dealing with the alerts
generated by a NIDS is represented by the false positive rate (the impact of false
positives on Intrusion Detection Systems reliability has analyzed in [1]). By false
positive we mean all network activities that are licit or harmless to the protected
systems, but that have been erroneously signaled by the NIDS as a security threat.
We should also consider that several techniques can be utilized by skilled attackers
to cover up the attack traces by forcing a NIDS to generate storms of irrelevant
alerts [2, 3]. If the NIDS is working properly, the real attack is likely identified
and signaled, but important alerts are hidden among several thousands of other
irrelevant and misleading alerts. This kind of diversion is very effective because it
prevents a timely deployment of proper countermeasures since the administrator is
overwhelmed by the large amount of alerts.

Appropriate countermeasures can be deployed on time only if there is a way
to distinguish between random attack attempts and possibly successful break-ins.
We observe that the distinction between these two types of events depends on the
software installed on the targeted machines: attempts at compromising a service
which is not installed or attacks exploiting a vulnerability that has been patched do
not deserve worrying.

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



290 Data Mining IX

The issue of intrusion detection alert management has been extensively
addressed in literature. The first steps aimed to relieve the administrator from
the burden of analyzing redundant alerts led to design of alert fusion techniques
[4]. While alert fusion may help to aggregate several homogeneous alerts, it
suffers several drawbacks that are solved by our proposal. First of all, aggregation
itself is not useful to assess the real alert dangerousness. Moreover, alert fusion
algorithms rely only on intrusion detection alerts, and do not leverage any external
information source. Authors of [5] proposed a formal aggregation scheme able
to correlate alerts exploiting the same vulnerability. To this purpose, their design
utilizes vulnerability information, but the proposal is just a more sophisticated
fusion algorithm that does not assess the threat level of an alert. Moreover, their
aggregation scheme rely on a single, homogeneous and structured vulnerability
database.

The process of automatically ranking vulnerabilities on the basis of a computed
threat level has been defined alert verification in [6] and [7]. Following the
taxonomy proposed in previous works, our proposal can be classified as a passive
alert verification scheme. This means that our alert verification is carried out
without an active interaction with the system(s) targeted by an attack. This
characteristic is indeed desirable, and allows our system to verify alerts in real
time, without imposing load on the monitored systems and without relying on
results generated by a possibly compromised machine. In [6] and [7], authors
propose an alert verification scheme based on a single, structured vulnerability
database. The dependency on a single information source is clearly identified as a
drawback in [8], due to possible incompleteness, lack of timely updates, and lack
of trust in the single information provider.

The main strength of our approach, that differentiates the proposed alert
verification scheme from all the previous works, is the ability to leverage a vast
amount of vulnerability data, built upon multiple, heterogeneous and unstructured
information sources. This critical task is carried out by parsing and semantically
tagging unstructured information, with techniques borrowed by the data mining
field.

Worth noticing works in which data mining techniques are applied in the
network intrusion detection context are [9] and [10]. However, in those papers
data mining techniques are proposed for attack detection, while intrusion alert
management is not considered.

Other attempts at identifying complex attack scenarios, so as to help human
users, have been discussed in [11]. However, that approach is suitable for offline
analysis, while the solution proposed in our paper is able to perform runtime threat
evaluation, thus allowing for a timely deployment of proper countermeasure(s).

A lower amount of false positive alerts augments the runtime analysis efficacy
and allows a broader application of the so called Network Intrusion Prevention
Systems (NIPS) [12]. They are the most modern versions of NIDS that are able to
automatically deploy some proactive countermeasure(s) after an alert, for example
by intervening on firewall rules at runtime.

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



Data Mining IX 291

3 System design

The proposed scheme for prioritizing alerts and reducing the false positive ratio
relies on the correlation of data coming from three heterogeneous domains:
1. NIDS alerts.

2. detailed description of the software installed on each machine of the

protected network.

3. Several external online vulnerability reports.

Our aim is to integrate at runtime the existing knowledge on vulnerabilities
and local software configurations with the intrusion alerts raised by the NIDS.
By knowing the real vulnerabilities that affect some machines of the protected
network, we can highlight the attacks exploiting these vulnerabilities by raising the
priority of the related NIDS alerts. On the other hand, the priority of alerts related
to attacks trying to exploit vulnerabilities that do not affect the hosts can be safely
lowered, and their analysis postponed. Although one might argue that known
vulnerabilities should be corrected as soon as they are found, several circumstances
exist in which it is impossible or extremely difficult to correct known software
vulnerabilities in a short time. Let us consider as examples:

e there is a time between a vulnerability disclosure and the patch released by
the software producer;

e within large organizations, comprising a large number of hosts with hetero-
geneous software and hardware platforms, updating may take a long time;

e a patch may introduce an incompatibility with previous software versions
(for example if the organization is using legacy software) and not installed
on purpose;

e some vulnerability is protocol specific and no immediate patch exists.

The design of the proposed architecture is shown in Figure 1.

Intrusion alert information is commonly expressed as one or more identifiers in
the context of heterogeneous online vulnerability repositories, that can be freely
consulted (Open Source Vulnerability Database (http://osvdb.org/), Common vul-
nerabilities and exposures (http://cve.mitre.org/), National Vulnerability Database
(http://nvd.nist.gov/nvd.cfm), Packet Storm security advisories (http://www.
packetstormsecurity.org/alladvisories/), SecurityFocus™vulnerabilities (http:/
www.securityfocus.com/vulnerabilities/)). From these sources, we extract a com-
plete list of the vulnerable operating systems and applications, including their
revision numbers.

To leverage the knowledge contained in the several external data sources that can
be used by the proposed systems, it is necessary to convert the heterogeneous and
unstructured data in a structured and homogeneous vulnerability database. This
task is performed by means of parsers. A parser is in charge for analyzing data
belonging to a single data source and producing as output structured information
compliant with a standard data format, used by all the parsers. Parsed information
is then materialized in the structured vulnerability information database, ready to
be used for alert filtering and prioritizing. Depending on the source size and on the
computational complexity related to its analysis, the parsing of a complete data

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



292 Data Mining IX

source may require several hours. However, once an information source has been
parsed for the first time, it is easy to keep the structured vulnerability database
constantly updated by parsing only new and recently modified elements in the data
source.

The installed software database is used to store and retrieve all the knowledge
related to the software installed on the machines contained in the protected
network. It is a main administrator duty to report which software and version are
installed on each machine and to keep that list updated and consistent. While it
does not exist a single automated tool able to perform this task without human
intervention, useful information can be gathered from package management soft-
ware. However, we remark that a network administrator should already know the
exact configuration of the administered machines to be able to apply the correct
patches and to keep the software updated.

The alert filter is the central element of the proposed architecture. Its purpose
is to receive all the alerts generated by the intrusion detection system, to evaluate
their level of threat for the protected machines and to rank each alert based on that
treat level. Ranked alert are then presented to the administrator for further analysis.

For each alert generated by the intrusion detection system, the alert filter extracts
the information related to the vulnerability that the attacker tried to exploit and to
the targeted host. After having identified the vulnerability, the alert filter looks up
all the vulnerable applications in the structured vulnerability information database.
It is worth noticing that, assuming that the database uses a unique vulnerability
identifier (as example, the vulnerability ID used by the NIDS) as an index, this

Alert prioritization
and filtering
I Unfiltered m
\I alerts ,.*
llll““ [} .
Installed \Net\/svr%?;irt]rafﬂc
software [¢]

database q ”‘ﬁ

-
-
-

S
.
%, Ranked
ﬂ’alerts
‘o
3
3

Structured
vulnerability
information

Protected
network
Advisory
parsing

Public vulnerability archives Analysis
console

Figure 1: Architecture design.

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



Data Mining IX 293

operation can be performed in a very small time. Concurrently, the identifier of the
host targeted by the attack (e.g., its IP address) is used to retrieve a complete list of
the installed applications. After that, those two lists are compared in order to iden-
tify if the attacked system runs one or more vulnerable applications. If this is the
case, then there is an high probability that the attacker succeeded in compromising
the targeted machine, and the alert priority is increased. Otherwise, the attack
failed, and the alert priority can be safely lowered. We remark that the comparison
among the two application lists (which usually contain only a few elements each)
is very low, and comparable, if not lower, to the computational complexity of
the packet analysis performed by the intrusion detection system. Hence, all this
operation can be performed at runtime with respect to the NIDS activities.

Our tool is able to effectively highlight the most significant alerts in real time,
thus allowing system administrators to focus their attention just on real intrusions,
without losing precious time in the analysis of a multitude of insignificant and
misleading alerts.

4 Integrated NIDS prototype
4.1 Architecture

The proposed data aggregation and runtime alert filter is implemented through a
combination of open source software that we can modify and integrate for our
purposes. The main software components are based on the Snort NIDS which is
the most popular signature-based network intrusion detection system, and on the
hybrid IDS framework named Prelude. To facilitate prototype operations, we have
implemented a graphical user interface and administration console through the
Prewikka software.

The Prelude manager is configured in alert-relaying mode. A custom manager
module specifically implemented in this project applies its previous knowledge to
each incoming alert.

Vulnerability descriptions are gathered off-line from existing archives (currently
from Bugtraq) and are updated periodically. We built a database of known
vulnerabilities through these Bugtraq descriptions and a custom parser. We assume
that a suitable list of installed software for each machine of the organization
is provided by the administrator. Every intrusion alert triggers a lookup in the
vulnerability database, from which we retrieve the list of software targeted by the
attack. Thanks to offline data mining operations, a lookup in the stored list of
installed software for the targeted machine is sufficient to know if there is a real
risk. Intrusion alerts which pass this validation are marked as high priority, while
other alerts are kept as a proof for later investigation.

4.2 External data source integration

Intrusion alerts are marked by a unique identifier of the triggered rule (called
Snort Identifier, or SID in Snort) and each rule has a reference to a Web page

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



294 Data Mining IX

describing the vulnerability. Most rules reference online vulnerability description
repositories, so the list of applications affected by a specific vulnerability can be
obtained through a parser that is able to extract information from vulnerability
reports.

By examining the set of Snort rules freely available from Sourcefire, Inc. we
noticed that there are a few major sources for rules references: CVE, Nessus,
ArachnNIDS (arachNIDS was the Advanced Reference Archive of Current Heuris-
tics for Network Intrusion Detection Systems, its development was discontinued
in 2001, the project was hosted on http://whitehats.com/), Bugtraq, Microsoft,
Application Security Inc. and McAfee Inc. Instead of relying on one information
source, our choice is to merge data coming from several sources, thus achieving a
complete and vendor-agnostic list of vulnerabilities and vulnerable applications.

We extract data from the vulnerability report Web pages that the advisory
service is offering and integrate an external data source through a suitable parser
specifically implemented for this purpose. In particular, the parser is able to
transform the unstructured or semi-structured advisory data into a structured
description of the vulnerabilities, that is directly usable by the alert filtering and
ranking element.

The deployed NIDS (or NIDSs, when a network requires more than one intru-
sion detection sensor) is not directly affected by the alert aggregation framework.
Alerts are issued through a remote logging facility, while filtering and ranking
occur only on the centralized alert database.

From the alerts issued by the NIDS sensors we are able to extract the IP address
of the targeted host and the TCP or UDP destination port, so as to determine
the service which is being attacked. The identifier of the triggered Snort rule is
utilized to extract the vulnerability description from the archive which contains it
(Snort rules references span over many archives), while a lookup in the installed
applications database is sufficient to know the exact name and version of the
actually running application. Searching the running application in the list of the
applications affected by the attack is all it takes to determine if there exists a real
threat. If this is the case, the priority of the alert is raised. This technique allows
for effective mitigation of alert storms, diversion attacks produced by a variety of
automated tools.

At any given time, there are some vulnerabilities which are known only to a
small group of security researchers, software developers or criminals. The research
community refers to these vulnerabilities as 0-day. Since they are not found in
public vulnerability archives, the corresponding alerts (if any are issued) will
not be assigned a high priority by our ranking system. There are some generic
Snort rules which raise alerts upon intercepting byte sequences that are commonly
found in remote exploits such as simple unencoded shellcodes. However, the
incident handling operations do not differ from what is traditionally done with
an unfiltered/unranked alert system: look up past records to find the attacks, if they
triggered some minor generic alert.

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



Data Mining IX 295

4.3 System management

A list of installed software and operative systems may be prepared directly by
the administration personnel or may be inferred through a fingerprinting tool
such as nmap from a remote host. (The identification of remote services and
operative systems using fingerprinting is just one of the features offered by the
Nmap scanner.) In either case, the proposed system knows if the attack has
likely succeeded or the alert was just a false positive by comparing the software
sustaining the attack to the list of targeted software.

The Prelude hybrid IDS system provides alert aggregation from any intrusion
detection system which supports logging through the Prelude interface library
(libprelude). The task of examining security alerts is carried out by a human
operator through an appropriate graphical interface. Prewikka is a Web interface
to the Prelude alert database which helps investigating security incidents and
tracking the deployed intrusion detection sensors status. High-priority alerts are
emphasized in the alert view presented to the security team, so as to highlight the
attacks which were most likely successful.

4.4 System validation

To verify the effectiveness of the proposed solution, we tested our prototype in
different controlled network environments. We carried out several experiments
for different system and workload scenarios. In each of them, we injected some
network attacks targeting vulnerable applications installed in the protected hosts,
as well as several irrelevant attacks. Our system has always been able to evidence
the really dangerous attacks by raising the priority of their alerts. High priority
alerts were also clearly distinguishable from ordinary alerts in the graphical user
interface.

We remark that the delay introduced by the alert filtering at runtime is minimal,
and fully compatible with runtime traffic analysis and system protection. The
operations performed by the alert ranking framework require only two searches
in indexed fields (identifier of the vulnerability and IP address of the targeted
machine) and the comparison of two lists of strings (the names of the vulnerable
software and the currently installed software). The efficiency of runtime operations
is guaranteed by a continuous offline data mining that relies on parsers to integrate
data from multiple and heterogeneous data sources.

5 Conclusions

We present a novel scheme to filter false alarms by correlating network intrusion
functions with previously acquired knowledge in the domain of security vulner-
abilities and local software deployment. This proposal greatly reduces the need
for extensive manual analysis. The most immediate benefit is the chance to know
at runtime if a serious threat is endangering the protected network, instead of
noticing it only after a successful inter alert correlation which may require more

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)



296 Data Mining IX

than one host to be compromised. This effect is achieved through a substantial and
completely automated filtering of false positives, that is carried out by applying
prior knowledge concerning the administered domain. This filtering process high-
lights only the alerts that represent a real security threat for the protected systems,
thus relieving the network administrator of the burden of manually analysing a
multitude of irrelevant and misleading alerts. Both viability and effectiveness of the
proposed approach have been demonstrated through an operative prototype, based
on well known and widely deployed open source software. Prototype performance
is compatible with runtime filtering of intrusion alerts.

References

[1] Axelsson, S., The base-rate fallacy and its implications for the difficulty
of intrusion detection. ACM Conference on Computer and Communications
Security, pp. 1-7, 1999.

[2] Mutz, D., Vigna, G. & Kemmerer, R., An experience developing an IDS
stimulator for the black-box testing of network intrusion detection systems.
Proceedings of the 2003 Annual Computer Security Applications Conference
(ACSAC ’03), Las Vegas, Nevada, pp. 374-383, 2003.

[3] Patton, S., Yurcik, W. & Doss, D., An achilles’ heel in signature-based ids:
Squealing false positives in snort, 2001.

[4] Li, Z., Chen, Y. & Beach, A., Towards scalable and robust distributed
intrusion alert fusion with good load balancing. Proc. of the SIGCOMM
Workshop on Large Scale Attack and Defense (LSAD06), 2006.

[5] Morin, B., Mé, L., Debar, H. & Ducassé, M., M2d2: A formal data model
for ids alert correlation. Proc. of the 5th symposium on Recent Advances in
Intrusion Detection (RAID 2002), 2002.

[6] Valeur, F., Vigna, G., Kruegel, C. & Kemmerer, R.A., A comprehensive
approach to intrusion detection alert correlation. IEEE Transactions on
Dependable and Secure Computing, 2004.

[7] Kruegel, C. & Robertson, W., Alert verification: Determining the success of
intrusion attempts, 2004.

[8] R. Gula, Tenable Network Security, Inc., Correlating IDS alerts with vulnera-
bility information, 2002. Available at http://www.nessus.org/whitepapers/va-
ids.pdf.

[9] Lee, W. & Stolfo, S.J., Data mining approaches for intrusion detection. Proc.
of the Seventh USENIX Security Symposium (SECURITY ’98), 1998.

[10] Portnoy, L., Eskin, E. & Stolfo, S.J., Intrusion detection with unlabeled data
using clustering. Proc. of ACM CSS Workshop on Data Mining Applied to
Security (DMSA-2001),2001.

[11] Ning, P, Cui, Y. & Reeves, D., Constructing attack scenarios through
correlation of intrusion alerts, 2002.

[12] Botwicz, J., Buciak, P. & Sapiecha, P., Building dependable intrusion pre-
vention systems. Proc. of International Conference on Dependability of
Computer Systems, 2006.

WIT Transactions on Information and Communication Technologies, Vol 40, © 2008 WIT Press
www.witpress.com, ISSN 1743-3517 (on-line)





